Kinase C Inhibitor (kinase + c_inhibitor)

Distribution by Scientific Domains

Kinds of Kinase C Inhibitor

  • protein kinase c inhibitor


  • Selected Abstracts


    Actions of Arachidonic Acid on Contractions and Associated Electrical Activity in Guinea-Pig Isolated Ventricular Myocytes

    EXPERIMENTAL PHYSIOLOGY, Issue 4 2001
    M. A. Mamas
    The actions of arachidonic acid (AA) were investigated in guinea-pig isolated ventricular myocytes. Exposure of myocytes to 10 ,M AA reduced the amplitude of contractions and calcium transients accompanying action potentials at a frequency of 1 Hz. AA (10 ,M) also reduced the amplitude of calcium currents recorded under voltage-clamp conditions. The suppression of contraction by AA was not prevented by either 10 ,M trihydroindomethicin (to inhibit cyclo-oxygenase) or 10 ,M ETYA (5,8,11,14-eicosatetraynoic acid, to inhibit AA metabolising enzymes), showing that the actions of AA appeared not to be mediated by these metabolites. The reduction of contraction by 10 ,M AA was also not prevented by the protein kinase C inhibitor, Ro31-8220 (1 ,M), showing that this pathway appeared not to be required for the observed effect. Direct effects of AA may be involved. A further action of 10 ,M AA was to suppress spontaneous electrical activity induced by either the ,-adrenergic agonist isoprenaline or the Na+ pump inhibitor, ouabain. This effect of AA on spontaneous activity might be associated with the observed reduction of calcium entry through L-type calcium channels, although additional effects of AA on calcium release from the sarcoplasmic reticulum might also be involved. [source]


    A novel protein kinase from Brassica juncea stimulated by a protozoan calcium binding protein

    FEBS JOURNAL, Issue 11 2000
    Purification, partial characterization
    A novel protein kinase (BjCCaBPk) from etiolated Brassica juncea seedlings has been purified and partially characterized. The purified enzyme migrated on SDS/PAGE as a single band with an apparent molecular mass of 43 kDa. The optimum pH for the kinase activity was 8.0. It was stimulated more than sixfold by the protozoa Entamoeba histolytica calcium binding protein EhCaBP (10.5 nm) but not by calmodulin (CaM) when used at equimolar concentration. Moreover the kinase also did not bind CaM,Sepharose. There was neither inhibition of the kinase activity in the presence of W-7 (a CaM antagonist), KN-62 (a specific calcium/CaM kinase inhibitor) and anti-CaM Ig, nor any effect on BjCCaBPk activity of staurosporine (a protein kinase C inhibitor). Furthermore a CaM-kinase specific substrate, syntide-2, proved to be a poor substrate for the BjCCaBPk compared with histone III-S. The phosphorylation of histone III-S involved serine residues. Southern and Northern blot analysis showed the presence of EhCaBP homologues in Brassica. The data suggest that BjCCaBPk may be a novel protein kinase with an affinity towards a calcium binding protein like EhCaBP. [source]


    Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin

    INTERNATIONAL JOURNAL OF CANCER, Issue 9 2007
    Hao-Wei Wang
    Abstract Dihydrodiol dehydrogenase (DDH) is a member of the aldo-keto reductases superfamily (AKR1C1,AKR1C4), which plays central roles in the metabolism of steroid hormone, prostaglandin and xenobiotics. We have previously detected overexpression of DDH as an indicator of poor prognosis and chemoresistance in human non-small lung cancer (NSCLC). We also found DDH expression to be closely related to chronic inflammatory conditions. The aim of this study was to investigate the links between inflammation, DDH expression and drug resistance in NSCLC cells. We showed that pro-inflammatory mediators including interleukin-6 (IL-6) could induce AKR1C1/1C2 expression in NSCLC cells and increase cellular resistance to cisplatin and adriamycin. This effect was nullified by Safingol, a protein kinase C inhibitor. Moreover, the expression of AKR1C1/1C2 was inversely correlated to NBS1 and apoptosis-inducing factor (AIF). We also showed that IL-6-induced AKR1C1/1C2 expression and drug resistance were inhibited by wogonin and chrysin, which are major flavonoids in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. In conclusion, this study demonstrated novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in NSCLC. The protein kinase C pathway may play an important role in this process. Overexpression of AKR1C1/1C2 may serve as a marker of chemoresistance. Further studies are warranted to evaluate wogonin and chrysin as a potential adjuvant therapy for drug-resistant NSCLC, especially for those with AKR1C1/1C2 overexpression. © 2007 Wiley-Liss, Inc. [source]


    Inhibition of oxotremorine-induced desensitization of guinea-pig ileal longitudinal muscle in Ca2+ -free conditions

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2001
    Shuhei Horio
    The aim of this study was to investigate the differences between oxotremorine-induced and acetylcholine (ACh)-induced desensitization, particularly under Ca2+ -free conditions, in guinea-pig ileal longitudinal muscle, and to elucidate the different mechanisms of desensitization that might exist between these two muscarinic agonists. Pretreatment of the tissue with 10,7 , 10,5 M oxotremorine (desensitizing treatment) in normal Tyrode solution caused desensitization of the responses to ACh, as did the desensitizing treatment with ACh. However, Ca2+ -free conditions significantly reduced oxotremorine-induced desensitization, contrary to the previous findings that Ca2+ -free conditions enhanced ACh-induced desensitization. The desensitizing treatment with oxotremorine caused suppression of the responses to high K+ (tonic phase), as did the ACh treatment. Ca2+ -free conditions removed this suppression, whereas this condition enhanced ACh-induced suppression of the K+ response. A protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (10,4 M) had no effect on oxotremorine-induced desensitization of the ACh response. The results suggest that a voltage-gated Ca2+ channel was involved in oxotremorine-induced desensitization, as in ACh-induced desensitization, but that the process of inactivation of Ca2+ channels was different between oxotremorine and ACh, and that oxotremorine-induced desensitization was due not only to Ca2+ channel, but also to other unknown factors. Protein kinase C did not participate in oxotremorine-induced desensitization. [source]


    Thrombin induces neoangiogenesis in the chick chorioallantoic membrane

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2003
    M. Caunt
    Summary., Most tumors have constitutively active tissue factor on their surface, capable of generating thrombin in the surrounding environment, and thrombosis is associated with cancer. Thrombin is known to induce a malignant phenotype by enhancing tissue adhesion and cell growth in vitro and in vivo in mice. Because tumors require angiogenesis for growth, we examined whether thrombin induces neoangiogenesis in a physiologically intact in vivo model. Thrombin (0.1 U mL,1) induced neoangiogenesis in the chick chorioallantoic membrane over a 24,72-h period by approximately 2,3-fold. This was inhibited by the potent thrombin inhibitor, hirudin and shown to have its mode of action by ligation of the thrombin protease-activated receptor, PAR-1. The thrombin receptor activation peptide, SFLLRNPNDKYEPF (200 µm) also enhanced neoangiogenesis c. 2,3-fold. Thrombin-induced neoangiogenesis was accompanied by the induction of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) mRNA at 24,48 h (approximately 2-fold) as determined by semi-quantitative reverse transcriptase-polymerase chain reaction. Thrombin-induced neoangiogenesis was inhibited to baseline level by the specific angiogenesis receptor inhibitors KDR-Fc (vs. VEGF) and Tie-2-Fc (vs. Ang-1 and Ang-2), as well as the non-specific angiogenesis inhibitor thrombospondin-1. Thrombin-induced neoangiogenesis was also inhibited to baseline level by agents known to inhibit thrombin receptor signaling in other cells: G-coupled protein receptor inhibitor, pertussis toxin (40 pg per egg), protein kinase C inhibitor, bisindolylmaleimide (1 µm per egg), MAP kinase inhibitor, PD980598 (10 µm per egg) and PI3 kinase inhibitor, LY294002 (0.25 µm per egg). Thus angiogenesis is stimulated by thrombosis, which could help explain the enhancement of experimental tumorigenesis by thrombin. [source]


    Effect of inhibitors of mitogen-activated protein kinase kinase on ,1B -adrenoceptor phosphorylation

    AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 1-2 2009
    R. Alcántara-Hernández
    Summary 1,Mitogen-activated protein kinases mediate hormone/neurotransmitter action on proliferation and differentiation and participate in receptor regulation. The effect of inhibitors of mitogen-activated kinase kinase (MEK) on ,1B -adrenoceptor phosphorylation state and function was studied using different cell lines. It was observed that at nanomolar concentrations the MEK inhibitors, PD98059 (2,-amino-3,-methoxyflavone) and UO126 [1,4-(diamino-2,3-dicyano/1,4-bis-(2-aminophenylthio)-butadiene], increased ,1B -adrenoceptor phosphorylation and diminished the functional response of this receptor to noradrenaline. These agents did not alter the action of lysophosphatidic acid. 2,Staurosporine (IC50 , 0.8 nm) (a general protein kinase inhibitor) and bis-indolyl-maleimide I (IC50 , 200 nm) (a selective protein kinase C inhibitor) inhibited PD98059-induced ,1B -adrenoceptor phosphorylation. In contrast, neither wortmannin (phosphoinositide 3-kinase inhibitor) nor genistein (protein tyrosine kinase inhibitor) had any effect. The data suggest the possibility that MEK might exert control on the activity of the enzymes that regulate receptor phosphorylation, such as G-protein-coupled receptor kinases, protein kinase C or serine/threonine protein phosphatases. 3,Coimmunoprecipitation studies showed a constant association of total extracellular signal-regulated kinase 2 (ERK2) with ,1B -adrenoceptors. Association of phospho-ERK 1/2 to ,1B -adrenoceptors increased not only in response to agonist but also in response to agents that increase ,1B -adrenoceptor and ERK1/2 phosphorylation [such as endothelin-1, phorbol 12-myristate-13-acetate (PMA) and epidermal growth factor (EGF)]; not surprisingly, PD98059 decreased this effect. 4,Our data show that blockade of MEK activity results in increased ,1B -adrenoceptor phosphorylation, diminished adrenoceptor function and perturbation of receptor,ERK1/2 interaction. [source]


    Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study

    BIPOLAR DISORDERS, Issue 6 2007
    Carlos A Zarate Jr
    Objectives:, Considerable preclinical biochemical and behavioral data suggest that protein kinase C inhibition would bring about antimanic effects. Notably, the structurally highly dissimilar antimanic agents lithium and valproate, when administered in therapeutically relevant paradigms, attenuate protein kinase C inhibition function. There is currently only one relatively selective protein kinase C inhibitor that crosses the blood,brain barrier available for human use , tamoxifen. Our group recently conducted a single-blind study with tamoxifen in acute mania and found that it significantly decreased manic symptoms within a short period of time (3,7 days). In this study, we investigated whether antimanic effects can be achieved with a protein kinase C inhibitor in subjects with mania. Methods:, In a double-blind, placebo-controlled study, 16 subjects with bipolar disorder, manic or mixed, with or without psychotic features, were randomly assigned to receive tamoxifen (20,140 mg/day; n = 8) or placebo (n = 8) for three weeks. Primary efficacy was assessed by the Young Mania Rating Scale. Results:, Subjects on tamoxifen showed significant improvement in mania compared to placebo as early as five days, an effect that remained significant throughout the three-week trial. The effect size for the drug difference was very large (d = 1.08, 95% confidence interval 0.45,1.71) after three weeks (p = 0.001). At study endpoint, response rates were 63% for tamoxifen and 13% for placebo (p = 0.12). Conclusions:, Antimanic effects resulted from a protein kinase C inhibitor; onset occurred within five days. Large, controlled studies with selective protein kinase C inhibitors in acute mania are warranted. [source]


    Rho kinase inhibitors reduce neurally evoked contraction of the rat tail artery in vitro

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2005
    Melanie Yeoh
    The effects of Rho kinase inhibitors (Y27632, HA-1077) on contractions to electrical stimulation and to application of phenylephrine, clonidine or ,,, -methylene adenosine 5,-triphosphate (,,, -mATP) were investigated in rat tail artery in vitro. In addition, continuous amperometry and intracellular recording were used to monitor the effects of Y27632 on noradrenaline (NA) release and postjunctional electrical activity, respectively. Y27632 (0.5 and 1 ,M) and HA-1077 (5 ,M) reduced neurally evoked contractions. In contrast, the protein kinase C inhibitor, Ro31-8220 (1 ,M), had little effect on neurally evoked contraction. In the absence and the presence of Y27632 (0.5 ,M), the reduction of neurally evoked contraction produced by the , -adrenoceptor antagonists prazosin (10 nM) and idazoxan (0.1 ,M) was similar. The P2-purinoceptor antagonist, suramin (0.1 mM), had no inhibitory effect on neurally evoked contraction in the absence or the presence of Y27632 (1 ,M). In the presence of Y27632, desensitization of P2X-purinoceptors with ,,, -mATP (10 ,M) increased neurally evoked contractions. Y27632 (1 ,M) and H-1077 (5 ,M) reduced sensitivity to phenylephrine and clonidine. In addition, Y27632 reduced contractions to ,,, -mATP (10 ,M). Y27632 (1 ,M) had no effect on the NA-induced oxidation currents or the purinergic excitatory junction potentials and NA-induced slow depolarizations evoked by electrical stimulation. Rho kinase inhibitors reduce sympathetic nerve-mediated contractions of the tail artery. This effect is mediated at a postjunctional site, most likely by inhibition of Rho kinase-mediated ,Ca2+ sensitization' of the contractile apparatus. British Journal of Pharmacology (2005) 146, 854,861. doi:10.1038/sj.bjp.0706377 [source]


    Sensitivity of human glioma U-373MG cells to radiation and the protein kinase C inhibitor, calphostin C

    CELL PROLIFERATION, Issue 1 2001
    M. Acevedo-Duncan
    We assessed the radiosensitivity of the grade III human glioma cell line U-373MG by investigating the effects of radiation and the specific protein kinase C inhibitor, calphostin C on the cell cycle and cell proliferation. Irradiated glioma U-373MG cells progressed through G1 -S and underwent an arrest in G2 -M phase. The radiosensitivity of U-373MG cells to graded doses of either photons or electrons was determine by microculture tetrazolium assay. The data was fitted to the linear-quadratic model. The proliferation curves demonstrated that U-373MG cells appear to be highly radiation resistant since 8 Gy was required to achieve 50% cell mortality. Compared to radiation alone, exposure to calphostin C (250 n m) 1 h prior to radiation decreased the proliferation of U-373MG by 76% and calphostin C provoked a weakly synergistic effect in concert with radiation. Depending on the time of application following radiation, calphostin C produced an additive or less than additive effect on cell proliferation. We postulate that the enhanced radiosensitivity observed when cells are exposed to calphostin C prior to radiation may be due to direct or indirect inhibition of protein kinase C isozymes required for cell cycle progression. [source]


    High glucose inhibits fructose uptake in renal proximal tubule cells: Involvement of cAMP, PLC/PKC, p44/42 MAPK, and cPLA2

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
    Su Hyung Park
    The precise signal that regulates fructose transport in renal proximal tubule cells (PTCs) under high glucose conditions is not yet known although fructose has been recommended as a substitute for glucose in the diets of diabetic people. Thus, we investigated that effect of high glucose on fructose uptake and its signaling pathways in primary cultured rabbit renal PTCs. Glucose inhibited the fructose uptake in a time- and dose-dependent manner. A maximal inhibitory effect of glucose on fructose uptake was observed at 25 mM glucose after 48 h, while 25 mM mannitol and l -glucose did not affect fructose uptake. Indeed, 25 mM glucose for 48 h decreased GLUT5 protein level. Thus, the treatment of 25 mM glucose for 48 h was used for this study. Glucose-induced (25 mM) inhibition of fructose uptake was blocked by pertussis toxin (PTX), SQ-22536 (an adenylate cyclase inhibitor), and myristoylated amide 14,22 (a protein kinase A inhibitor). Indeed, 25 mM glucose increased the intracellular cAMP content. Furthermore, 25 mM glucose-induced inhibition of fructose uptake was prevented by neomycin or U-73122 (phospholipase C inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase C inhibitors). In fact, 25 mM glucose increased the total PKC activity and translocation of PKC from the cytosolic to membrane fraction. In addition, PD 98059 (a p44/42 mitogen-activated protein kinase (MAPK) inhibitor) but not SB 203580 (a p38 MAPK inhibitor) and mepacrine or AACOCF3 (phospholipase A2 inhibitors) blocked 25 mM glucose-induced inhibition of fructose uptake. Results of Western blotting using the p44/42 MAPK and GLUT5 antibodies were consistent with the results of uptake experiments. In conclusion, high glucose inhibits the fructose uptake through cAMP, PLC/PKC, p44/42 MAPK, and cytosolic phospholipase A2 (cPLA2) pathways in the PTCs. © 2004 Wiley-Liss, Inc. [source]


    Tibolone Rapidly Attenuates the GABAB Response in Hypothalamic Neurones

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2008
    J. Qiu
    Tibolone is primarily used for the treatment of climacteric symptoms. Tibolone is rapidly converted into three major metabolites: 3,- and 3,-hydroxy (OH)-tibolone, which have oestrogenic effects, and the ,4-isomer (,4-tibolone), which has progestogenic and androgenic effects. Because tibolone is effective in treating climacteric symptoms, the effects on the brain may be explained by the oestrogenic activity of tibolone. Using whole-cell patch clamp recording, we found previously that 17,-oestradiol (E2) rapidly altered ,-aminobutyric acid (GABA) neurotransmission in hypothalamic neurones through a membrane oestrogen receptor (mER). E2 reduced the potency of the GABAB receptor agonist baclofen to activate G-protein-coupled, inwardly rectifying K+ (GIRK) channels in hypothalamic neurones. Therefore, we hypothesised that tibolone may have some rapid effects through the mER and sought to elucidate the signalling pathway of tibolone's action using selective inhibitors and whole cell recording in ovariectomised female guinea pigs and mice. A sub-population of neurones was identified post hoc as pro-opiomelanocortin (POMC) neurones by immunocytochemical staining. Similar to E2, we have found that tibolone and its active metabolite 3,OH-tibolone rapidly reduced the potency of the GABAB receptor agonist baclofen to activate GIRK channels in POMC neurones. The effects were blocked by the ER antagonist ICI 182 780. Other metabolites of tibolone (3,OH-tibolone and ,4-tibolone) had no effect. Furthermore, tibolone (and 3,OH-tibolone) was fully efficacious in ER, knockout (KO) and ER,KO mice to attenuate GABAB responses. The effects of tibolone were blocked by phospholipase C inhibitor U73122. However, in contrast to E2, the effects of tibolone were not blocked by protein kinase C inhibitors or protein kinase A inhibitors. It appears that tibolone (and 3,OH-tibolone) activates phospholipase C leading to phosphatidylinositol bisphosphate metabolism and direct alteration of GIRK channel function. Therefore, tibolone may enhance synaptic efficacy through the Gq signalling pathways of mER in brain circuits that are critical for maintaining homeostatic functions. [source]


    Activation of Arylalkylamine N -Acetyltransferase by Phorbol Esters in Bovine Pinealocytes Suggests a Novel Regulatory Pathway in Melatonin Synthesis

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2004
    C. Schomerus
    Abstract In all mammalian species investigated, noradrenaline activates a ,-adrenoceptor/cAMP/protein kinase A-dependent mechanism to switch on arylalkylamine N -acetyltransferase and melatonin biosynthesis in the pineal gland. Other compounds which are known to influence the melatonin-generating system are phorbol esters. The effect of phorbol esters on regulation of melatonin synthesis has been mainly investigated in rat pinealocytes. In these cells, phorbol esters do not increase cAMP levels and arylalkylamine N -acetyltransferase on their own; however, phorbol esters potentiate the effects on cAMP and AANAT activity induced upon ,-adrenoceptor stimulation. In the present study, we investigated the effect of phorbol esters on the regulation of melatonin synthesis in bovine pinealocytes. We show that, in these cells, the phorbol esters 4,-phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate have a direct stimulatory effect and induced 4,10-fold increases in AANAT protein levels, AANAT activity and melatonin production. The extent of these effects was similar to those induced by noradrenaline. Notably, responses to PMA were not accompanied by increases in cAMP levels. Northern blot analysis showed that Aanat mRNA levels did not change upon PMA treatment indicating that phorbol esters control AANAT at a post-transcriptional level. The effects on AANAT and melatonin production were reduced by use of protein kinase C inhibitors, but not by blockade of the cyclic AMP/protein kinase A pathway. Our results point towards a novel mechanism in the regulation of melatonin production that is cAMP-independent and involves protein kinase C. The study is of particular interest because regulation of melatonin biosynthesis in bovines may resemble that in primates more closely than that in rodents. [source]


    Kainic acid triggers oligodendrocyte precursor cell proliferation and neuronal differentiation from striatal neural stem cells

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2007
    Carolina Redondo
    Abstract Glutamate is an excitatory amino acid that serves important functions in mammalian brain development through ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/ kainate receptor stimulation. Neural stem cells with self-renewal and multilineage potential are a useful tool to study the signals involved in the regulation of brain development. We have investigated the role played by AMPA/kainate receptors during the differentiation of neural stem cells derived from fetal rat striatum. The application of 1 and 10 ,M kainic acid increased significantly the phosphorylation of the cyclic AMP response element binding protein (CREB), raised bromodeoxyuridine incorporation in O4-positive oligodendrocyte precursors, and increased the number of O1-positive cells in the cultures. Increased CREB phosphorylation and proliferation were prevented by the AMPA receptor antagonist 4-4(4-aminophenyl)-1,2-dihydro-1-methyl-2-propylcarbamoyl-6,7-methylenedioxyphthalazine (SYM 2206) and by protein kinase A and protein kinase C inhibitors. Cultures treated with 100 ,M kainic acid showed decreased proliferation, a lower proportion of O1-positive cells, and apoptosis of O4-positive cells. None of these effects were prevented by SYM 2206, suggesting that kainate receptors take part in these events. We conclude that AMPA receptor stimulation by kainic acid promotes the proliferation of oligodendrocyte precursors derived from neural stem cells through a mechanism that requires the activation of CREB by protein kinase A and C. In the neurons derived from these cells, either AMPA or kainate receptor stimulation produces neuritic growth and larger cell bodies. © 2007 Wiley-Liss, Inc. [source]


    Diabetic neuropathy: therapies on the horizon

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2009
    Danish Mahmood
    Abstract Objectives This is a review of emerging interventions from the recent preclinical and clinical literature that demonstrate the potential for effectiveness in the therapy of diabetic neuropathy (DN). DN is the most common complication of diabetes mellitus and up to 50% of patients with type 1 and type 2 forms have some or other form of neuropathy. The pathology of DN is characterized by progressive nerve fibre loss that gives rise to positive and negative clinical signs and symptoms such as pain, paraesthesiae and loss of sensation. Key findings There are very few drugs available to directly treat DN. Those that are clinically indicated provide symptomatic relief but do not repair or reverse underlying nerve damage. However, some agents are in clinical development that may support adult neurons and direct reparative processes after injury stages. Several disease modifying drugs such as aldose reductase inhibitors and protein kinase C inhibitors are in phase III development. Agents on the horizon include neurotrophic factors, growth factors, gene therapy, immunotherapy, poly(ADP-ribose) polymerase inhibitors and non-immunosuppressive immunophilin ligands. Summary Progress has been made toward understanding the biochemical mechanisms leading to diabetic neuropathy, and as a result, new treatment modalities are being explored. The pathogenesis, types and approaches for treating DN together with the newer therapeutic interventions on the horizon are discussed. [source]


    Efficacy of a protein kinase C inhibitor (tamoxifen) in the treatment of acute mania: a pilot study

    BIPOLAR DISORDERS, Issue 6 2007
    Carlos A Zarate Jr
    Objectives:, Considerable preclinical biochemical and behavioral data suggest that protein kinase C inhibition would bring about antimanic effects. Notably, the structurally highly dissimilar antimanic agents lithium and valproate, when administered in therapeutically relevant paradigms, attenuate protein kinase C inhibition function. There is currently only one relatively selective protein kinase C inhibitor that crosses the blood,brain barrier available for human use , tamoxifen. Our group recently conducted a single-blind study with tamoxifen in acute mania and found that it significantly decreased manic symptoms within a short period of time (3,7 days). In this study, we investigated whether antimanic effects can be achieved with a protein kinase C inhibitor in subjects with mania. Methods:, In a double-blind, placebo-controlled study, 16 subjects with bipolar disorder, manic or mixed, with or without psychotic features, were randomly assigned to receive tamoxifen (20,140 mg/day; n = 8) or placebo (n = 8) for three weeks. Primary efficacy was assessed by the Young Mania Rating Scale. Results:, Subjects on tamoxifen showed significant improvement in mania compared to placebo as early as five days, an effect that remained significant throughout the three-week trial. The effect size for the drug difference was very large (d = 1.08, 95% confidence interval 0.45,1.71) after three weeks (p = 0.001). At study endpoint, response rates were 63% for tamoxifen and 13% for placebo (p = 0.12). Conclusions:, Antimanic effects resulted from a protein kinase C inhibitor; onset occurred within five days. Large, controlled studies with selective protein kinase C inhibitors in acute mania are warranted. [source]


    Characterization of apoptosis induced by protein kinase C inhibitors and its modulation by the caspase pathway in acute promyelocytic leukaemia

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2000
    Hesham M. Amin
    Acute promyelocytic leukaemia (APL;M3) is a unique form of acute myelogenous leukaemia characterized by t(15;17) translocation. The induction of apoptosis via inhibiting protein kinase C (PKC) has been recently viewed as a promising tool for the eradication of several malignant disorders. In the present study, we investigated the effect of two different protein kinase C inhibitors, Gö6976 and safingol, on the induction of apoptosis in the APL cell line NB4 and its all trans retinoic acid (ATRA)-resistant variant NB4.306. The effect of the PKC inhibitors on leukaemic cells obtained from three APL patients was also studied. We also evaluated the possible involvement of the caspases in apoptosis induced by PKC inhibitors. Significant time- and concentration-dependent apoptotic changes were demonstrated using Gö6976 and safingol. In addition, our results demonstrated that the caspases were involved in the apoptosis induced by the PKC inhibitors. In conclusion, our study illustrates that the PKC inhibitors Gö6976 and safingol induce apoptosis in APL and hence could be potential therapeutic agents for the treatment of this disease. [source]


    Role of Ca2+ mobilization and Ca2+ sensitization in 8-iso-PGF2, -induced contraction in airway smooth muscle

    CLINICAL & EXPERIMENTAL ALLERGY, Issue 2 2009
    A. Shiraki
    Summary Background Isoprostanes are prostaglandin (PG)-like compounds synthesized by oxidative stress, not by cyclooxygenase, and increase in bronchoalveolar lavage fluid of patients with asthma. The airway inflammation implicated in this disease may be amplified by oxidants. Although isoprostanes are useful biomarkers for oxidative stress, the action of these agents on airways has not been fully elucidated. Objective This study was designed to determine the intracellular mechanisms underlying the effects of oxidative stress on airway smooth muscle, focused on Ca2+ signalling pathways involved in the effect of 8-iso-PGF2,. Methods Using simultaneous recording of isometric tension and F340/F380 (an indicator of intracellular concentrations of Ca2+, [Ca2+]i), we examined the correlation between tension and [Ca2+]i in response to 8-iso-PGF2, in the fura-2 loaded tracheal smooth muscle. Results Augmented tension and F340/F380 by 8-iso-PGF2, were attenuated by ICI-192605, an antagonist of thromboxane A2 receptors (TP receptors). Moreover, D609, an antagonist of phosphatidylcholine-specific phospholipase C, markedly reduced both the tension and F340/F380 induced by 8-iso-PGF2,, whereas U73122, an antagonist of phosphatidylinositol-specific phospholipase C, modestly inhibited them by 8-iso-PGF2,. SKF96365, a non-selective antagonist of Ca2+ channels, markedly reduced both tension and F340/F380 by 8-iso-PGF2,. However, diltiazem and verapamil, voltage-dependent Ca2+ channel inhibitors, modestly attenuated tension although their reduction of F340/F380 was not different from that by SKF96365. Y-27632, an inhibitor of Rho-kinase, significantly attenuated contraction induced by 8-iso-PGF2, without reducing F340/F380, whereas GF109203X and Go6983, protein kinase C inhibitors, did not markedly antagonize them although reducing F340/F380 with a potency similar to Y-27632. Conclusion 8-iso-PGF2, causes airway smooth muscle contraction via activation of TP receptors. Ca2+ mobilization by SKF96365- and D609-sensitive Ca2+ influx and Ca2+ sensitization by Rho-kinase contribute to the intracellular mechanisms underlying the action of 8-iso-PGF2,. Rho-kinase may be a therapeutic target for the physiologic abnormalities induced by oxidative stress in airways. [source]