Kin Competition (kin + competition)

Distribution by Scientific Domains


Selected Abstracts


Cryptic Kin Selection: Kin Structure in Vertebrate Populations and Opportunities for Kin-Directed Cooperation

ETHOLOGY, Issue 3 2010
Ben J. Hatchwell
Animal societies of varying complexity have been the favoured testing ground for inclusive fitness theory, and there is now abundant evidence that kin selection has played a critical role in the evolution of cooperative behaviour. One of the key theoretical and empirical findings underlying this conclusion is that cooperative systems have a degree of kin structure, often the product of delayed dispersal, that facilitates interactions with relatives. However, recent population genetic studies have revealed that many non-cooperative animals also have kin-structured populations, providing more cryptic opportunities for kin selection to operate. In this article, I first review the evidence that kin structure is widespread among non-cooperative vertebrates, and then consider the various contexts in which kin selection may occur in such taxa, including: leks, brood parasitism, crèches, breeding associations, territoriality and population dynamics, foraging and predator deterrence. I describe the evidence that kin-selected benefits arise from interacting with kin in each of these contexts, notwithstanding the potential costs of kin competition and inbreeding. I conclude that as the tools required to determine population genetic structure are readily available, measurement of kin structure and the potential for kin selection on a routine basis is likely to reveal that this process has been an important driver of evolutionary adaptation in many non-cooperative as well as cooperative species. [source]


THE ENFORCEMENT OF COOPERATION BY POLICING

EVOLUTION, Issue 7 2010
Claire El Mouden
Policing is regarded as an important mechanism for maintaining cooperation in human and animal social groups. A simple model providing a theoretical overview of the coevolution of policing and cooperation has been analyzed by Frank (1995, 1996b, 2003, 2009), and this suggests that policing will evolve to fully suppress cheating within social groups when relatedness is low. Here, we relax some of the assumptions made by Frank, and investigate the consequences for policing and cooperation. First, we address the implicit assumption that the individual cost of investment into policing is reduced when selfishness dominates. We find that relaxing this assumption leads to policing being favored only at intermediate relatedness. Second, we address the assumption that policing fully recovers the loss of fitness incurred by the group owing to selfishness. We find that relaxing this assumption prohibits the evolution of full policing. Finally, we consider the impact of demography on the coevolution of policing and cooperation, in particular the role for kin competition to disfavor the evolution of policing, using both a heuristic "open" model and a "closed" island model. We find that large groups and increased kin competition disfavor policing, and that policing is maintained more readily than it invades. Policing may be harder to evolve than previously thought. [source]


THE EVOLUTION OF DISPERSAL IN A LEVINS' TYPE METAPOPULATION MODEL

EVOLUTION, Issue 10 2007
Vincent A.A. Jansen
We study the evolution of the dispersal rate in a metapopulation model with extinction and colonization dynamics, akin to the model as originally described by Levins. To do so we extend the metapopulation model with a description of the within patch dynamics. By means of a separation of time scales we analytically derive a fitness expression from first principles for this model. The fitness function can be written as an inclusive fitness equation (Hamilton's rule). By recasting this equation in a form that emphasizes the effects of competition we show the effect of the local competition and the local population size on the evolution of dispersal. We find that the evolution of dispersal cannot be easily interpreted in terms of avoidance of kin competition, but rather that increased dispersal reduces the competitive ability. Our model also yields a testable prediction in term of relatedness and life-history parameters. [source]


EVOLUTION OF MIGRATION UNDER KIN SELECTION AND LOCAL ADAPTATION

EVOLUTION, Issue 1 2005
Sylvain Billiard
Abstract We present here a stochastic two-locus, two-habitat model for the evolution of migration with local adaptation and kin selection. One locus determines the migration rate while the other causes local adaptation. We show that the opposing forces of kin competition and local adaptation can lead to the existence of one or two convergence stable migration rates, notably depending on the recombination rate between the two loci. We show that linkage between migration and local adaptation loci has two antagonist effects: when linkage is tight, cost of local adaptation increases, leading to smaller equilibrium migration rates. However, when linkage is tighter, the population structure at the migration locus tends to be very high because of the indirect selection, and thus equilibrium migration rates increases. This result, qualitatively different from results obtained with other models of migration evolution, indicates that ignoring drift or the detail of the genetic architecture may lead to incorrect conclusions. [source]


Budding dispersal and the sex ratio

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2009
A. Gardner
Abstract There is much interest in understanding how population demography impacts upon social evolution. Here, we consider the impact of rate and pattern of dispersal upon a classic social evolutionary trait , the sex ratio. We recover existing analytical results for individual dispersal, and we extend these to allow for budding dispersal. In particular, while a cancelling of relatedness and kin competition effects means that the sex ratio is unaffected by the rate of individual dispersal, we find that a decoupling of relatedness and kin competition means that budding dispersal favours increasingly female-biased sex ratios. More generally, our analysis illustrates the relative ease with which biological problems involving class structure can be solved using a kin selection approach to social evolution theory. [source]