Home About us Contact | |||
Kidney Cell Line (kidney + cell_line)
Selected AbstractsDNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell linesINTERNATIONAL JOURNAL OF CANCER, Issue 3 2008Ken Kawamoto Abstract Secreted frizzled-related protein 2 (sFRP2) is a negative modulator of the Wingless-type (Wnt) signaling pathway, and shown to be inactivated in renal cell carcinoma (RCC). However, the molecular mechanism of silencing of sFRP2 is not fully understood. Our study was designed to elucidate the silencing mechanism of sFRP2 in RCC. Expression of sFRP2 was examined in 20 pairs of primary cancers by immunohistochemistry. Kidney cell lines (HK-2, Caki-1, Caki-2, A-498 and ACHN) were analyzed for sFRP2 expression using real-time RT-PCR and Western blotting. The methylation status at 46 CpG sites of the 2 CpG islands in the sFRP2 promoter was characterized by bisulfite DNA sequencing. Histone modifications were assessed by chromatin immunoprecipitation (ChIP) assay using antibodies against AcH3, AcH4, H3K4 and H3K9. sFRP2 was frequently repressed in primary cancers and in RCC cells. The majority of sFRP2 negative cells had a methylated promoter. Meanwhile, sFRP2 expression was repressed by a hypomethylated promoter in Caki-1 cells, and these cells had a repressive histone modification at the promoter. In Caki-1 cells, sFRP2 was reactivated by trichostatin A (TSA). Repressive histone modifications were also observed in RCC cells with hypermethylated promoters, but sFRP2 was reactivated only by 5-aza-2,-deoxycytidine (DAC) and not by TSA. However, the activation of the silenced sFRP2 gene could be achieved in all cells using a combination of DAC and TSA. This is the first report indicating that aberrant DNA methylation and histone modifications work together to silence the sFRP2 gene in RCC cells. © 2008 Wiley-Liss, Inc. [source] A comparison of 60, 70, and 90 kDa stress protein expression in normal rat NRK-52 and human HK-2 kidney cell lines following in vitro exposure to arsenite and cadmium alone or in combinationJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2002Emily F. Madden Abstract Arsenite and cadmium are two potent nephrotoxicants and common Superfund site elements. These elements are included among the stress protein inducers, but information regarding relationships between toxicity produced by combinations of these agents to the stress protein response is lacking. In this study, the immortalized cell lines normal rat kidney NRK-52E and human kidney HK-2 were exposed in vitro to arsenite (As3+), cadmium (Cd2+), or to equimolar As3+ plus Cd2+ mixture combinations for 3 and 5 h over a concentration range of 0.1,100 ,M. After a 12-h recovery period, cultured cells were then evaluated for expression of the 60, 70, and 90 kDa major stress protein families. Results indicated that expression of stress proteins varied depending on the species of kidney cells exposed, the exposure concentrations, and the length of exposure to each element on an individual basis and for combined mixtures. For the HK-2 kidney cell line, increased levels of the 70 kDa stress protein was observed for single and combined element exposures whereas there was no change or a decrease of stress proteins 60 and 90 kDa. Increased 70 kDa expression was observed for 10-,M doses of single elements and for a lower dose of 1 ,M of the As plus Cd mixture at 3- and 5-h exposures. NRK-52 kidney cells exposed to equivalent doses of As3+ and Cd2+ alone or in combination showed increased levels of all stress proteins 60, 70, and 90 kDa. This increase was seen for 10 ,M of the As plus Cd mixture at 3 h whereas for single element exposures, increased stress protein levels were generally observed for the 100-,M doses. At 5 h- exposure, 60 and 90 kDa levels increased for 10 ,M of Cd2+ and 60 kDa levels increased for 1 ,M of As3+. However, exposures to 10 ,M of the As plus Cd mixture decreased 60 kDa protein expression to control levels at 5 h. For both kidney cell lines, there was a decrease in the stress protein expression levels for all three stress protein families for 100-,M doses of the mixture combination for 3- and 5-h exposures. These data indicate a dose- and combination-related correlation between depression of the stress protein response and the onset of overt cellular toxicity and/or cell death. The threshold for these changes was cell line specific. © 2002 Wiley Periodicals, Inc. J Biochem Mol Toxicol 16:24,32, 2002; DOI 10.1002/jbt.10015 [source] Modulation of microtubule dynamics by the microtubule-associated protein 1aJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2009Elliott M. Faller Abstract Structural microtubule-associated proteins (MAPs) interact with microtubules to regulate the various dynamic stages of microtubules. The purpose of this study was to measure the impact of myc-tagged MAP1a fragments on microtubule dynamic phases in vivo. Cells from an epithelial kidney cell line (LLCPK1) that had been permanently transfected with human green fluorescent protein (GFP)-,-tubulin were transiently transfected with myc-tagged MAP1a fragments. Cells expressing MAP1a fragments were used to make direct observations of microtubule dynamics in living cells using fluorescence microscopy. All truncated MAP1a heavy chain fragments that contained the microtubule-binding domain were shown to associate with microtubules. Truncated fragments containing different regions of the projection domain of MAP1a demonstrated variations in their impact on microtubule dynamic events by promoting growth or inhibition of shortening phases. In contrast to MAP1a, MAP2c bundled microtubules and resulted in a complete arrest of microtubule motility. Results from the present study suggest that MAP1a promotes slow, stable growth of microtubules. This type of growth may be important in the maintenance and restructuring of adult neurons. © 2008 Wiley-Liss, Inc. [source] Lepeophtheirus salmonis secretory/excretory products and their effects on Atlantic salmon immune gene regulationPARASITE IMMUNOLOGY, Issue 4 2007M. D. FAST SUMMARY We have previously shown that Lepeophtheirus salmonis produces trypsin and prostaglandin E2 (PGE2) that are most likely responsible for the limited inflammatory response of Atlantic salmon to infection. After removal of the dopamine and PGE2, the immunomodulatory activity of unfractionated and pools of the fractionated secretions was determined by examining the effects of the secretions on Atlantic salmon immune gene expression. Incubation of macrophage-enriched isolates of Atlantic salmon head kidney cells with the unfractionated secretion + PGE2 revealed a significant inhibition of interleukin-1, (IL-1,) and major histocompatibility class I gene expression. Inhibition of lipopolysaccharide-induced IL-1, expression in the Atlantic salmon head kidney cell line (SHK-1) was observed when three pools of the secretory/excretory products were tested. Further purification of products within these pools revealed that fraction 1-2 could account fully for the inhibition of IL-1, expression in SHK-1 cells observed in pooled fraction 1. This study demonstrates that there are other immunomodulatory compounds produced by L. salmonis, in addition to PGE2 and trypsin, that can inhibit the expression of Atlantic salmon immune-related genes in vitro. [source] TRPC channels function independently of STIM1 and Orai1THE JOURNAL OF PHYSIOLOGY, Issue 10 2009Wayne I. DeHaven Recent studies have defined roles for STIM1 and Orai1 as calcium sensor and calcium channel, respectively, for Ca2+ -release activated Ca2+ (CRAC) channels, channels underlying store-operated Ca2+ entry (SOCE). In addition, these proteins have been suggested to function in signalling and constructing other channels with biophysical properties distinct from the CRAC channels. Using the human kidney cell line, HEK293, we examined the hypothesis that STIM1 can interact with and regulate members of a family of non-selective cation channels (TRPC) which have been suggested to also function in SOCE pathways under certain conditions. Our data reveal no role for either STIM1 or Orai1 in signalling of TRPC channels. Specifically, Ca2+ entry seen after carbachol treatment in cells transiently expressing TRPC1, TRPC3, TRPC5 or TRPC6 was not enhanced by the co-expression of STIM1. Further, knockdown of STIM1 in cells expressing TRPC5 did not reduce TRPC5 activity, in contrast to one published report. We previously reported in stable TRPC7 cells a Ca2+ entry which was dependent on TRPC7 and appeared store-operated. However, we show here that this TRPC7-mediated entry was also not dependent on either STIM1 or Orai1, as determined by RNA interference (RNAi) and expression of a constitutively active mutant of STIM1. Further, we determined that this entry was not actually store-operated, but instead TRPC7 activity which appears to be regulated by SERCA. Importantly, endogenous TRPC activity was also not regulated by STIM1. In vascular smooth muscle cells, arginine-vasopressin (AVP) activated non-selective cation currents associated with TRPC6 activity were not affected by RNAi knockdown of STIM1, while SOCE was largely inhibited. Finally, disruption of lipid rafts significantly attenuated TRPC3 activity, while having no effect on STIM1 localization or the development of ICRAC. Also, STIM1 punctae were found to localize in regions distinct from lipid rafts. This suggests that TRPC signalling and STIM1/Orai1 signalling occur in distinct plasma membrane domains. Thus, TRPC channels appear to be activated by mechanisms dependent on phospholipase C which do not involve the Ca2+ sensor, STIM1. [source] Anti-apoptotic genes Aven and E1B-19K enhance performance of BHK cells engineered to express recombinant factor VIII in batch and low perfusion cell cultureBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2007Toey Nivitchanyong Abstract The engineering of production cell lines to express anti-apoptotic genes has been pursued in recent years due to potential process benefits, including enhanced cell survival, increased protein expression, and improved product quality. In this study, a baby hamster kidney cell line secreting recombinant factor VIII (BHK-FVIII) was engineered to express the anti-apoptotic genes Aven and E1B-19K. In high cell density shake flask culture evaluation, 11 clonal cell lines expressing either E1B-19K or a combination of Aven and E1B-19K showed improved survival compared to both parental and blank vector cell line controls. These cell lines exhibited lower caspase-3 activation and reduced Annexin-V binding compared to the controls. Parental and blank vector cell lines were less than 50% viable after 48 h of exposure to thapsigargin while cell lines expressing E1B-19K with or without Aven maintained viabilities approaching 90%. Subsequently, the best Aven-E1B-19K candidate cell line was compared to the parental cell line in 12-L perfusion bioreactor studies. Choosing the appropriate perfusion rates in bioreactors is a bioprocess optimization issue, so the bioreactors were operated at sequentially lower specific perfusion rates, while maintaining a cell density of 2,×,107 viable cells/mL. The viability of the parental cell line declined from nearly 100% at a perfusion rate of 0.5 nL/cell/day to below 80% viability, with caspase-3 activity exceeding 15%, at its lower perfusion limit of 0.15 nL/cell/day. In contrast, the Aven-E1B-19K cell line maintained an average viability of 94% and a maximum caspase-3 activity of 2.5% even when subjected to a lower perfusion minimum of 0.1 nL/cell/day. Factor VIII productivity, specific growth rate, and cell size decreased for both cell lines at lower perfusion rates, but the drop in all cases was larger for the parental cell line. Specific consumption of glucose and glutamine and production of lactate were consistently lower for the Aven-E1B-19K culture. Furthermore, the yield of ammonia from glutamine increased for the Aven-E1B-19K cell line relative to the parent to suggest altered metabolic pathways following anti-apoptosis engineering. These results demonstrate that expression of anti-apoptotic genes Aven and E1B-19K can increase the stability and robustness of an industrially relevant BHK-FVIII mammalian cell line over a wide range of perfusion rates. Biotechnol. Bioeng. 2007; 98: 825,841. © 2007 Wiley Periodicals, Inc. [source] A comparison of 60, 70, and 90 kDa stress protein expression in normal rat NRK-52 and human HK-2 kidney cell lines following in vitro exposure to arsenite and cadmium alone or in combinationJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2002Emily F. Madden Abstract Arsenite and cadmium are two potent nephrotoxicants and common Superfund site elements. These elements are included among the stress protein inducers, but information regarding relationships between toxicity produced by combinations of these agents to the stress protein response is lacking. In this study, the immortalized cell lines normal rat kidney NRK-52E and human kidney HK-2 were exposed in vitro to arsenite (As3+), cadmium (Cd2+), or to equimolar As3+ plus Cd2+ mixture combinations for 3 and 5 h over a concentration range of 0.1,100 ,M. After a 12-h recovery period, cultured cells were then evaluated for expression of the 60, 70, and 90 kDa major stress protein families. Results indicated that expression of stress proteins varied depending on the species of kidney cells exposed, the exposure concentrations, and the length of exposure to each element on an individual basis and for combined mixtures. For the HK-2 kidney cell line, increased levels of the 70 kDa stress protein was observed for single and combined element exposures whereas there was no change or a decrease of stress proteins 60 and 90 kDa. Increased 70 kDa expression was observed for 10-,M doses of single elements and for a lower dose of 1 ,M of the As plus Cd mixture at 3- and 5-h exposures. NRK-52 kidney cells exposed to equivalent doses of As3+ and Cd2+ alone or in combination showed increased levels of all stress proteins 60, 70, and 90 kDa. This increase was seen for 10 ,M of the As plus Cd mixture at 3 h whereas for single element exposures, increased stress protein levels were generally observed for the 100-,M doses. At 5 h- exposure, 60 and 90 kDa levels increased for 10 ,M of Cd2+ and 60 kDa levels increased for 1 ,M of As3+. However, exposures to 10 ,M of the As plus Cd mixture decreased 60 kDa protein expression to control levels at 5 h. For both kidney cell lines, there was a decrease in the stress protein expression levels for all three stress protein families for 100-,M doses of the mixture combination for 3- and 5-h exposures. These data indicate a dose- and combination-related correlation between depression of the stress protein response and the onset of overt cellular toxicity and/or cell death. The threshold for these changes was cell line specific. © 2002 Wiley Periodicals, Inc. J Biochem Mol Toxicol 16:24,32, 2002; DOI 10.1002/jbt.10015 [source] Synthesis of 2-Fluoro N10 -Substituted Acridones and Their Cytotoxicity Studies in Sensitive and Resistant Cancer Cell Lines and Their DNA Intercalation StudiesARCHIV DER PHARMAZIE, Issue 11 2009Yergeri C. Mayur Abstract A series of 2-fluoro N10 -substituted acridone derivatives with varying alkyl side chain length with propyl, butyl substitution, and a tertiary amine group at the terminal end of the alkyl side chain were synthesized and screened against cancer cell lines SW 1573, SW 1573 2R 160 (P-gp substrate) which are non-small lung cancer cell lines, MCF-7, MCF-7/MR (BCRP substrate) are breast cancer cell lines, 2008 WT, 2008MRP1, 2008MRP2, 2008MRP3 are ovarian cancer cell lines, and human embryo kidney cell lines like HEK293, HEK293 MRP4, and HEK293 MRP5i. The propyl-series compounds showed lipophilicity in the range of 1.93 to 4.40 and the butyl series in the range of 2.37 to 4.78. The compounds 4, 7, and 8 showed good cytotoxicity against the 60 human cancer cell line panel of the National Cancer Institute, USA. The compounds 14 and 15 showed a better cytotoxicity in most of the cancer cell lines compared to other compounds tested. The DNA-binding properties of the compounds were evaluated based on their affinity or intercalation with CT-DNA measured with absorption titration. The compound 11 bearing planar tricyclic ring linked with a butyl methylpiperazino side chain showed the highest binding affinity with a binding constant (Ki) of 10.38×10 M,1. Evaluation of the compounds in cell lines with an overexpression of various multidrug resistance-related protein (MRP), P-glycoprotein (P-gp), or Breast Cancer Resistance Protein (BCRP) showed that all compounds are not substrates for any of these transporters. [source] |