Key Transcription Factor (key + transcription_factor)

Distribution by Scientific Domains


Selected Abstracts


Epigenetics and T helper 1 differentiation

IMMUNOLOGY, Issue 3 2009
Thomas M. Aune
Summary Naïve T helper cells differentiate into two subsets, T helper 1 and 2, which either transcribe the Ifng gene and silence the Il4 gene or transcribe the Il4 gene and silence the Ifng gene, respectively. This process is an essential feature of the adaptive immune response to a pathogen and the development of long-lasting immunity. The ,histone code' hypothesis proposes that formation of stable epigenetic histone marks at a gene locus that activate or repress transcription is essential for cell fate determinations, such as T helper 1/T helper 2 cell fate decisions. Activation and silencing of the Ifng gene are achieved through the creation of stable epigenetic histone marks spanning a region of genomic DNA over 20 times greater than the gene itself. Key transcription factors that drive the T helper 1 lineage decision, signal transducer and activator 4 (STAT4) and T-box expressed in T cells (T-bet), play direct roles in the formation of activating histone marks at the Ifng locus. Conversely, STAT6 and GATA binding protein 3, transcription factors essential for the T helper 2 cell lineage decision, establish repressive histone marks at the Ifng locus. Functional studies demonstrate that multiple genomic elements up to 50 kilobases from Ifng play critical roles in its proper transcriptional regulation. Studies of three-dimensional chromatin conformation indicate that these distal regulatory elements may loop towards Ifng to regulate its transcription. We speculate that these complex mechanisms have evolved to tightly control levels of interferon-, production, given that too little or too much production would be very deleterious to the host. [source]


Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
Sangmi Chung
Abstract Nurr1 is a transcription factor critical for the development of midbrain dopaminergic (DA) neurons. This study modified mouse embryonic stem (ES) cells to constitutively express Nurr1 under the elongation factor-1, promoter. The Nurr1-expression in ES cells lead to up-regulation of all DA neuronal markers tested, resulting in about a 4- to 5-fold increase in the proportion of DA neurons. In contrast, other neuronal and glial markers were not significantly changed by Nurr1 expression. It was also observed that there was an additional 4-fold increase in the number of DA neurons in Nurr1-expressing clones following treatment with Shh, FGF8 and ascorbic acid. Several lines of evidence suggest that these neurons may represent midbrain DA neuronal phenotypes; firstly, they coexpress midbrain DA markers such as aromatic l -amino acid decarboxylase, calretinin, and dopamine transporter, in addition to tyrosine hydroxylase and secondly, they do not coexpress other neurotransmitters such as GABA or serotonin. Finally, consistent with an increased number of DA neurons, the Nurr1 transduction enhanced the ability of these neurons to produce and release DA in response to membrane depolarization. This study demonstrates an efficient genetic manipulation of ES cells that facilitates differentiation to midbrain DA neurons, and it will serve as a framework of genetic engineering of ES cells by key transcription factor to regulate their cell fate. [source]


Differential Expression Patterns of Runx2 Isoforms in Cranial Suture Morphogenesis

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2001
Mi-Hyun Park
Abstract Runx2 (previously known as Cbfa1/Pebp2,A/AML3), a key transcription factor in osteoblast differentiation, has at least two different isoforms using alternative promoters, which suggests that the isoforms might be expressed differentially. Haploinsufficiency of the Runx2 gene is associated with cleidocranial dysplasia (CCD), the main phenotype of which is inadequate development of calvaria. In spite of the biological relevance, Runx2 gene expression patterns in developing calvaria has not been explored previously, and toward this aim we developed three probes: pRunx2, which comprises the common coding sequence of Runx2 and hybridizes with all isoforms; pPebp2,A, which specifically hybridizes with the isoform transcribed with the proximal promoter; and pOsf2, which hybridizes with the isoform transcribed with the distal promoter. These probes were hybridized with tissue sections of mouse calvaria taken at various time points in development. Runx2 expression was localized to the critical area of cranial suture closure, being found in parietal bones, osteogenic fronts, and sutural mesenchyme. Pebp2,A and Osf2 showed tissue-specific expression patterns. The sites of Pebp2,A expression were almost identical to that of pRunx2 hybridization but expression was most intense in the sutural mesenchyme, where undifferentiated mesenchymal cells reside. The Osf2 isoform was strongly expressed in the osteogenic fronts, as well as in developing parietal bones, where osteopontin (OP) and osteocalcin (OC) also were expressed. However, in contrast to Pebp2,A, Osf2 expression did not occur in sutural mesenchyme. Pebp2,A also was expressed prominently in primordial cartilage that is found under the sutural mesenchyme and is not destined to be mineralized. Thus, Osf2 isoforms contribute to events later in osteoblast differentiation whereas the Pebp2,A isoform participates in a wide variety of cellular activities ranging from early stages of osteoblast differentiation to the final differentiation of osteoblasts. [source]


Stat1-mediated cytoplasmic attenuation in osteoimmunology

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2005
Hiroshi Takayanagi
Abstract Signal transducer and activator of transcription 1 (Stat1) is a critical mediator of gene transcription in type I interferon (IFN-,/,) signaling that is essential for host defense against viruses. In the skeletal system, type I IFNs (IFN-,/,) also play an important physiological role in the inhibition of receptor activator of NF-,B ligand (RANKL)-induced osteoclast differentiation and bone resorption: mice deficient in IFN signaling exhibit decreased bone mass accompanied by the activation of osteoclastogenesis. On the other hand, an unexpected increase in bone mass was observed in Stat1-deficient mice, indicating that Stat1 has a hitherto unknown function in the regulation of bone formation. Indeed, Stat1 was found to have a unique, non-canonical function as a cytoplasmic attenuator of Runx2, a key transcription factor for osteoblast differentiation. Thus, the loss of Stat1 results in excessive activation of Runx2 and osteoblast differentiation, thereby tipping the balance in favor of bone formation over bone resorption. This is an interesting example in which a latent transcription factor attenuates the activity of another transcription factor in the cytoplasm, and reveals a novel regulatory mechanism of bone remodeling by immunomodulatory molecules. Here, we summarize recent advances in the study of Stat1 and IFNs in the context of osteoimmunology, including latest reports that question whether the inhibitory function of Stat1 in chondrocytes is responsible for dwarfism in achondroplasia. © 2004 Wiley-Liss, Inc. [source]


Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2008
Qiuhui Pan
Mouse embryonic fibroblasts (MEFs) can be differentiated into fully functional chondrocytes in response to bone morphogenetic protein-2 (BMP-2). The expression of Sox9, a critical transcription factor for the multiple steps of chondrogenesis, has been reported to be upregulated during this process. But the molecular mechanisms by which BMP-2 promotes chondrogenesis still remain largely unknown. The aim of the present study was therefore to investigate the underlying mechanism. In the MEFs, BMP-2 efficiently induced Sox9 expression along with chondrogenic differentiation in a time- and dose-dependent manner. SB203580, a specific inhibitor for p38 pathway, blocked BMP-2-induced chondrogenic differentiation as well as Sox9 expression and its transactivation of downstream genes. Forced expression of Smad6, a natural antagonist for BMP/Smad pathway, only inhibited Sox9 protein function without rendering any effects on its mRNA expression. A CCAAT box was identified in Sox9 promoter as the cis -elements responsible for BMP-2 stimulation. This study provides insight into the mechanisms underlying BMP-2-regulated Sox9 expression and activity in MEFs, and suggests differential roles of BMP-2/p38 and BMP-2/Smad pathways in modulating the function of Sox9 during chondrogenesis. J. Cell. Physiol. 217: 228,241, 2008. © 2008 Wiley-Liss, Inc. [source]


Transcriptional dynamics of endodermal organ formation

DEVELOPMENTAL DYNAMICS, Issue 1 2009
Richard I. Sherwood
Abstract Although endodermal organs including the liver, pancreas, and intestine are of significant therapeutic interest, the mechanism by which the endoderm is divided into organ domains during embryogenesis is not well understood. To better understand this process, global gene expression profiling was performed on early endodermal organ domains. This global analysis was followed up by dynamic immunofluorescence analysis of key transcription factors, uncovering novel expression patterns as well as cell surface proteins that allow prospective isolation of specific endodermal organ domains. Additionally, a repressive interaction between Cdx2 and Sox2 was found to occur at the prospective stomach,intestine border, with the hepatic and pancreatic domains forming at this boundary, and Hlxb9 was revealed to have graded expression along the dorsal,ventral axis. These results contribute to understanding the mechanism of endodermal organogenesis and should assist efforts to replicate this process using pluripotent stem cells. Developmental Dynamics 238:29,42, 2009. © 2008 Wiley-Liss, Inc. [source]


Citri Reticulatae Pericarpium extract suppresses adipogenesis in 3T3-L1 preadipocytes

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2007
Fuu Sheu
Abstract This study examined how Citrus herbal medicines,Citri Reticulatae Pericarpium (CRP), Citri Reticulatae Viride Pericarpium (CRVP), Aurantii Immaturus Fructus (AIF) and Aurantii Fructus (AF),affect the differentiation of 3T3-L1 adipocytes. Eight days after induction for differentiation with 3-isobutyl-1-methylxanthine, dexamethasone and insulin (MDI) medium and simultaneously with the tested CRP, intracellular triacylglycerol accumulations of 3T3-L1 cells were significantly (P < 0.05) reduced compared with those for CRVP, AIF and AF and those of the vehicle control. This suppression affect was dose-dependent, and decreases in triacylglycerol production of 12.6, 18.7, 34.05 and 49.6% were observed for CRP at concentrations of 50, 100, 150 and 200 µg mL,1 respectively. Additionally, the expression of key transcription factors for the 3T3-L1 adipogenesis gene, including PPAR-,, C/EBP-, and SREBP-1, was markedly reduced by CRP treatment. These results suggest that dietary CRP suppresses 3T3-L1 differentiation by down-regulation of adipogenic transcription factors. Experimental data may prove useful in further medical examination of the use of CRP for body weight control. Copyright © 2007 Society of Chemical Industry [source]