Home About us Contact | |||
Animal Models Used (animal + models_used)
Selected AbstractsDuchenne's muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategiesINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2003C.A. Collins Summary., Duchenne's muscular dystrophy (DMD) is a lethal childhood disease caused by mutations of the dystrophin gene, the protein product of which, dystrophin, has a vital role in maintaining muscle structure and function. Homologues of DMD have been identified in several animals including dogs, cats, mice, fish and invertebrates. The most notable of these are the extensively studied mdx mouse, a genetic and biochemical model of the human disease, and the muscular dystrophic Golden Retriever dog, which is the nearest pathological counterpart of DMD. These models have been used to explore potential therapeutic approaches along a number of avenues including gene replacement and cell transplantation strategies. High-throughput screening of pharmacological and genetic therapies could potentially be carried out in recently available smaller models such as zebrafish and Caenorhabditis elegans. It is possible that a successful treatment will eventually be identified through the integration of studies in multiple species differentially suited to addressing particular questions. [source] REVIEW ARTICLE: Maternal Transmission of Asthma RiskAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 1 2009Robert H. Lim Maternal asthma significantly increases the risk of asthma in offspring, but the mechanisms remain poorly defined. We review animal models used to study the maternal effect, focusing on a murine model developed in our laboratory. Mother mice rendered allergic to ovalbumin produce offspring that are more susceptible to allergic sensitization, seen as airway hyperresponsiveness and allergic airway inflammation after a sensitization protocol, which has minimal effects on newborns from normal mothers. Mechanistic analyses identify a role for interleukin-4 (based on pre-mating injection of neutralizing antibodies), dendritic cells and allergen-specific T cells (based on adoptive transfer experiments). Other maternal exposures (e.g. pollutant exposure and non-pulmonary allergy) can increase asthma susceptibility in offspring. This observation implies that the maternal transmission of asthma represents a final common pathway to various types of inflammatory stimuli. Identification of the shared molecular mechanisms in these models may allow better prevention and therapy. Current knowledge, gaps in knowledge and future directions are discussed. [source] Collagen-induced arthritis as a model of hyperalgesia: Functional and cellular analysis of the analgesic actions of tumor necrosis factor blockadeARTHRITIS & RHEUMATISM, Issue 12 2007Julia J. Inglis Objective There is a disparity in the animal models used to study pain in rheumatoid arthritis (RA), which tends to be acute in nature, and models used to assess the pathogenesis of RA. The latter models, like human RA, are lymphocyte-driven and polyarthritic. We assessed pain behavior and mechanisms in collagen-induced arthritis (CIA), the model of preclinical arthritis used most commonly in the field of immunology. We then validated the model using anti,tumor necrosis factor (anti-TNF) therapy, which has analgesic effects in models of inflammation as well as in human RA. Methods CIA was induced in DBA/1 mice by immunization with type II collagen at the base of the tail. Swelling and mechanical and thermal hyperalgesia were assessed before and for 28 days after the onset of arthritis. Spontaneous behavior was assessed using an automated activity monitor. Glial activity was assessed by glial fibrillary acidic protein expression, and nerve damage was evaluated by activating transcription factor 3 expression. The actions of anti-TNF therapy on nociception were then evaluated. Results Arthritis resulted in a decrease in the threshold for thermal and mechanical stimuli, beginning on the day of onset. Decreased spontaneous activity was also observed. A significant increase in the number of hyperplasic spinal cord astrocytes was observed beginning 10 days after the onset of arthritis. Anti-TNF therapy was profoundly analgesic, with an efficacy similar to that of cyclooxygenase 2 inhibition, and reduced astrocyte activity in CIA. Conclusion This study shows that the CIA model is suitable for testing not only antiinflammatory but also analgesic drugs for potential use in RA, and highlights the importance of using appropriate disease models to assess relevant pain pathways. [source] The Role of Cystatin C in Cerebral Amyloid Angiopathy and Stroke: Cell Biology and Animal ModelsBRAIN PATHOLOGY, Issue 1 2006Efrat Levy A variant of the cysteine protease inhibitor, cystatin c, forms amyloid deposited in the cerebral vasculature of patients with hereditary cerebral hemorrhage with amyloidosis, icelandic type (hchwa-i), leading to cerebral hemorrhages early in life. however, cystatin c is also implicated in neuronal degenerative diseases in which it does not form the amyloid protein, such as alzheimer disease (ad). accumulating data suggest involvement of cystatin c in the pathogenic processes leading to amyloid deposition in cerebral vasculature and most significantly to cerebral hemorrhage in patients with cerebral amyloid angiopathy (caa). This review focuses on cell culture and animal models used to study the role of cystatin c in these processes. [source] |