KCa Channels (kca + channel)

Distribution by Scientific Domains


Selected Abstracts


A new role for P2 receptors: talking with calcium-activated potassium channels

NEUROGASTROENTEROLOGY & MOTILITY, Issue 11 2007
P. P. Bertrand
Abstract Purinergic fast synaptic transmission may play a very subtle role in regulating the excitability of enteric circuits. That is one of the important findings in a new paper by Ren and Galligan in the current issue of this Journal. They first provide compelling evidence that P2X3 receptors (ionotropic purine receptors) are expressed by guinea-pig motor and interneurons and that these subtypes mediate the purinergic fast excitatory postsynaptic potential (EPSP). They also found that the P2X3 -mediated depolarization was often followed by a hyperpolarization. This is an intriguing finding because if the purinergic fast EPSPs are also followed by a hyperpolarization, then it could play a role in truncating bursts of synaptic potentials or in shaping periodic synaptic input. The hyperpolarization is caused by calcium entry through the P2X3 receptor which then activates a calcium-activated potassium (KCa) channel. Surprisingly, the hyperpolarization was not affected by any of the standard blockers of calcium- or voltage-activated K+ channels suggesting that a novel KCa channel is present in the enteric neurons. Such a wide-spread channel could well have an important physiological role and could be an important new drug target for regulating reflex activity in the enteric nervous system. [source]


5-HT inhibits N-type but not L-type Ca2+ channels via 5-HT1A receptors in lamprey spinal neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003
Russell H. Hill
Abstract 5-HT is a potent modulator of locomotor activity in vertebrates. In the lamprey, 5-HT dramatically slows fictive swimming. At the neuronal level it reduces the postspike slow afterhyperpolarization (sAHP), which is due to apamin-sensitive Ca2+ -dependent K+ channels (KCa). Indirect evidence in early experiments suggested that the sAHP reduction results from a direct action of 5-HT on KCa channels rather than an effect on the Ca2+ entry during the action potential [Wallén et al., (1989) J. Neurophysiol., 61, 759,768]. In view of the characterization of different subtypes of Ca2+ channels with very different properties, we now reinvestigate if there is a selective action of 5-HT on a Ca2+ channel subtype in dissociated spinal neurons in culture. 5-HT reduced Ca2+ currents from high voltage activated channels. N-type, but not L-type, Ca2+ channel blockers abolished this 5-HT-induced reduction. It was also confirmed that 5-HT depresses Ca2+ currents in neurons, including motoneurons, in the intact spinal cord. 8-OH-DPAT, a 5-HT1A receptor agonist, also inhibited Ca2+ currents in dissociated neurons. After incubation in pertussis toxin, to block Gi/o proteins, 5-HT did not reduce Ca2+ currents, further indicating that the effect is caused by an activation of 5-HT1A receptors. As N-type, but not L-type, Ca2+ channels are known to mediate the activation of KCa channels and presynaptic transmitter release at lamprey synapses, the effects of 5-HT reported here can contribute to a reduction in both actions. [source]


The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels

FEBS JOURNAL, Issue 16 2008
Simon J. Gunning
The Janus-faced atracotoxins are a unique family of excitatory peptide toxins that contain a rare vicinal disulfide bridge. Although lethal to a wide range of invertebrates, their molecular target has remained enigmatic for almost a decade. We demonstrate here that these toxins are selective, high-affinity blockers of invertebrate Ca2+ -activated K+ (KCa) channels. Janus-faced atracotoxin (J-ACTX)-Hv1c, the prototypic member of this toxin family, selectively blocked KCa channels in cockroach unpaired dorsal median neurons with an IC50 of 2 nm, but it did not significantly affect a wide range of other voltage-activated K+, Ca2+ or Na+ channel subtypes. J-ACTX-Hv1c blocked heterologously expressed cockroach large-conductance Ca2+ -activated K+ (pSlo) channels without a significant shift in the voltage dependence of activation. However, the block was voltage-dependent, indicating that the toxin probably acts as a pore blocker rather than a gating modifier. The molecular basis of the insect selectivity of J-ACTX-Hv1c was established by its failure to significantly inhibit mouse mSlo currents (IC50 , 10 ,m) and its lack of activity on rat dorsal root ganglion neuron KCa channel currents. This study establishes the Janus-faced atracotoxins as valuable tools for the study of invertebrate KCa channels and suggests that KCa channels might be potential insecticide targets. [source]


Differential action of bradykinin on intrarenal regional perfusion in the rat: waning effect in the cortex and major impact in the medulla

THE JOURNAL OF PHYSIOLOGY, Issue 15 2009
ena B
The renal kallikrein,kinin system is involved in the control of the intrarenal circulation and arterial pressure but bradykinin (Bk) effects on perfusion of individual kidney zones have not been examined in detail. Effects of Bk infused into renal artery, renal cortex or medulla on perfusion of whole kidney (RBF, renal artery probe) and of the cortex, outer- and inner medulla (CBF, OMBF, IMBF: laser-Doppler fluxes), were examined in anaesthetized rats. Renal artery infusion of Bk, 0.3,0.6 mg kg,1 h,1, induced no sustained increase in RBF or CBF. OMBF and IMBF increased initially 6 or 16%, respectively; only the IMBF increase (+10%) was sustained. Pre-treatment with l -NAME, 2.4 mg kg,1i.v., prevented the sustained but not initial transient elevation of medullary perfusion. Intracortical Bk infusion, 0.75,1.5 mg kg,1 h,1, did not alter RBF or CBF but caused a sustained 33% increase in IMBF. Intramedullary Bk, 0.3 mg kg,1 h,1, did not alter RBF or CBF but caused sustained increases in OMBF (+10%) and IMBF (+23%). These responses were not altered by pre-treatment with 1-aminobenzotriazole, 10 mg kg,1i.v., a cytochrome P-450 (CYP450) inhibitor, but were prevented or significantly attenuated by l -NAME or intramedullary clotrimazole, 3.9 mg kg,1 h,1, an inhibitor of CYP450 epoxygenase and of calcium-dependent K+ channels (KCa). Thus, cortical vasodilatation induced by Bk is only transient so that the agent is unlikely to control perfusion of the cortex. Bk selectively increases perfusion of the medulla, especially of its inner layer, via activation of the NO system and of KCa channels. [source]


Loperamide mobilizes intracellular Ca2+ stores in insulin-secreting HIT-T15 cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2003
Li-Ping He
We have investigated the effects of loperamide on intracellular Ca2+ stores and membrane K+ channels in insulin-secreting hamster insulinoma (HIT-T15) cells. In cell-attached patch-clamp mode, loperamide (3,250 ,M) activated large single-channel currents. The loperamide-activated currents were tentatively identified as Ca2+ -activated K+ channel (KCa) currents based on their single-channel conductance (145 pS), apparent reversal potential, and insensitivity to tolbutamide. Smaller single-channel currents with a conductance (32 pS) indicative of adenosine triphosphate-sensitive K+ channels (KATP channels) were also recorded, but were insensitive to loperamide. Surprisingly, the loperamide-activated currents persisted in the absence of extracellular Ca2+. Yet under these conditions, we still measured loperamide-induced Ca2+ increases. These effects are dose dependent. Loperamide had no effects in the inside-out patch configuration, suggesting that loperamide does not directly activate the channels with large conductance, but does so secondarily to release of Ca2+ from intracellular stores. Carbachol (100 ,M), an agonist of muscarinic receptors, which mediates IP3 -dependent intracellular Ca2+ release, enhanced the effects of loperamide on KCa channels. Both the putative KCa currents and Ca2+ signals induced by loperamide (with ,0' [Ca2+]o) were abolished when the intracellular Ca2+ stores had been emptied by pretreating the cells with either carbachol or thapsigargin, an endoplasmic reticulum Ca2+ -ATPase inhibitor that blocks reuptake of calcium. These data indicate that loperamide in insulin-secreting , -cells evokes intracellular Ca2+ release from IP3 -gated stores and activates membrane currents that appear to be carried by KCa, rather than KATP channels. British Journal of Pharmacology (2003) 139, 351,361. doi:10.1038/sj.bjp.0705263 [source]


Mechanism of prolonged vasorelaxation to ATP in the rat isolated mesenteric arterial bed

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2001
Vera Ralevic
This study investigated the mechanism of prolonged relaxation to ATP in the rat isolated perfused mesenteric arterial bed. In methoxamine pre-constricted preparations, ATP elicited dose-dependent, endothelium-dependent, rapid relaxation at 5 pmol , 0.05 ,mol (Rmax 76±5.6%, pD2 9.2±0.2), and contraction, followed by prolonged endothelium-independent vasorelaxation at 0.05, 0.5 and 5 ,mol (56±3.0, 87±2.9 and 85±4.6%). Suramin (100 ,M), attenuated rapid (pD2 7.8±0.1) and prolonged relaxation to ATP. The selective P2 receptor antagonist PPADS (10 ,M) reduced prolonged, but not rapid relaxation. Neither phase of relaxation was affected by 8-sulphophenyltheophylline (1 ,M) or indomethacin (10 ,M). ,,,-methylene ATP (,,,-meATP; 10 ,M) attenuated prolonged relaxation to ATP (relaxations at 0.05 and 0.5 ,mol were 25±8.3 and 48±9.0%, respectively). ,,,-meATP blocked contractions and revealed rapid relaxation to ATP at 0.05 , 5 ,mol. Capsaicin pre-treatment did not affect either phase of vasorelaxation to ATP. ,,,-meATP (10 ,M) had no effect on vasorelaxation mediated by electrical stimulation of capsaicin-sensitive sensory nerves. High K+ (25 mM) attenuated prolonged relaxation to ATP (21±2.6 and 64±5.8%, at 0.05 and 0.5 ,mol, respectively), but had no effect on rapid relaxation. Ouabain (1 mM), an inhibitor of Na+/K+ -ATPase, and glibenclamide (10 ,M), an inhibitor of KATP channels, also attenuated prolonged relaxation to ATP. Charybdotoxin (100 nM), a selective inhibitor of KCa channels, and tetraethylammonium (10 mM) had no effect on rapid or prolonged relaxations. These results show that the prolonged phase of vasorelaxation to ATP in the rat isolated mesenteric arterial bed, which may be mediated by P2Y receptors, is endothelium-independent, involves activation of Na+/K+ -ATPase and KATP channels, and is inhibited by ,,,-meATP. Neither prolonged nor rapid vasorelaxation to ATP involves capsaicin-sensitive sensory nerves, adenosine P1 receptors, prostanoids or KCa channels. British Journal of Pharmacology (2001) 132, 685,692; doi:10.1038/sj.bjp.0703868 [source]


Interaction of hydrogen sulfide with ion channels

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2010
Guanghua Tang
Summary 1. Hydrogen sulfide (H2S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H2S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H2S is the first identified endogenous gaseous opener of ATP-sensitive K+ channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K+ channels, H2S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic , cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H2S inhibited L-type Ca2+ channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca2+ levels. H2S activated small and medium conductance KCa channels but its effect on BKCa channels has not been consistent. 4. H2S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca2+ channels and TRPV1 channels. The activation of TRPV1 and TRPA1 by H2S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl, secretion. 5. The activation of Cl, channel by H2S has been shown as a protective mechanism for neurons from oxytosis. H2S also potentiates N -methyl- d -aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H2S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated. [source]


Renal And Cardiovascular Actions Of 20-Hydroxyeicosatetraenoic Acid And Epoxyeicosatrienoic Acids

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2000
Richard J Roman
SUMMARY 1. Arachidonic acid (AA) is metabolized by cytochrome P450 (CYP)-dependent pathways to epoxyeicosatrienoic acids (EET) and 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney and the peripheral vasculature. 2. The present short review summarizes the renal and cardiovascular actions of these important mediators. 3. Epoxyeicosatrienoic acids are vasodilators produced by the endothelium that hyperpolarize vascular smooth muscle (VSM) cells by opening Ca2+ -activated K+ (KCa) channels. 20-Hydroxyeicosatetraenoic acid is a vasoconstrictor that inhibits the opening of KCa channels in VSM cells. Cytochrome P450 4A inhibitors block the myogenic response of small arterioles to elevations in transmural pressure and autoregulation of renal and cerebral blood flow in vivo. Cytochrome P450 4A blockers also attenuate the vasoconstrictor response to elevations in tissue PO2, suggesting that this system may serve as a vascular oxygen sensor. Nitric oxide and carbon monoxide inhibit the formation of 20-HETE and a fall in 20-HETE levels contributes to the activation of KCa channels in VSM cells and the vasodilator response to these gaseous mediators. 20-Hydroxyeicosatetraenoic acid also mediates the inhibitory actions of peptide hormones on sodium transport in the kidney and the mitogenic effects of growth factors in VSM and mesangial cells. A deficiency in the renal production of 20-HETE is associated with the development of hypertension in Dahl salt-sensitive rats. 4. In summary, the available evidence indicates that CYP metabolites of AA play a central role in the regulation of renal, pulmonary and vascular function and that abnormalities in this system may contribute to the pathogenesis of cardiovascular diseases. [source]