Home About us Contact | |||
Julian Oscillation (julian + oscillation)
Selected AbstractsThe Pacific,South American modes and their downstream effectsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2001Kingtse C. Mo Abstract There are two pervasive modes of atmospheric variability in the Southern Hemisphere (SH) that influence circulation and rainfall anomalies over South America. They appear as leading empirical orthogonal functions (EOFs) of 500-hPa height or 200-hPa streamfunction anomalies and are found from intraseasonal to decadal time scales. Both patterns exhibit wave 3 hemispheric patterns in mid to high latitudes, and a well-defined wave train with large amplitude in the Pacific,South American (PSA) sector. Therefore, they are referred to as the PSA modes (PSA1 and PSA2). PSA1 is related to sea surface temperature anomalies (SSTAs) over the central and eastern Pacific at decadal scales, and it is the response to El Niño,Southern Oscillation (ENSO) in the interannual band. The associated rainfall summer pattern shows rainfall deficits over northeastern Brazil and enhanced rainfall over southeastern South America similar to rainfall anomalies during ENSO. PSA2 is associated with the quasi-biennial component of ENSO, with a period of 22,28 months and the strongest connections occur during the austral spring. The associated rainfall pattern shows a dipole pattern with anomalies out of phase between the South Atlantic Convergence Zone (SACZ) extending from central South America into the Atlantic and the subtropical plains centred at 35°S. These two modes are also apparent in tropical intraseasonal oscillations for both summer and winter. Eastward propagation of enhanced convection from the Indian Ocean through the western Pacific to the central Pacific is accompanied by a wave train that appears to originate in the convective regions. The positive PSA1 pattern is associated with enhanced convection over the Pacific from 150°E to the date line. The convection pattern associated with PSA2 is in quadrature with that of PSA1. Both PSA modes are influenced by the Madden Julian Oscillation and influence rainfall over South America. Copyright © 2001 Royal Meteorological Society [source] Simulation of the Madden, Julian Oscillation and its teleconnections in the ECMWF forecast systemTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 649 2010Frédéric Vitart Abstract A series of 46-day ensemble integrations starting on the 15th of each month from 1989 to 2008 has been completed with the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast system. The Madden, Julian Oscillation (MJO) simulated by the hindcasts is diagnosed using an index based on combined empirical orthogonal functions (EOFs) of zonal winds at 200 and 850 hPa and outgoing long-wave radiation. Results indicate that the dynamical model is able to maintain the amplitude of the MJO during the 46 days of integrations and the model displays skill for up to about 20 days to predict the evolution of the MJO. However, the MJO simulated by the model has a too slow eastward propagation and has difficulties crossing the Maritime Continent. The MJO teleconnections simulated by the ECMWF forecast system have been compared to reanalyses. In the Tropics, the impact of the MJO on precipitation is generally consistent with reanalysis. In the Northern Extratropics, the MJO simulated by the model has an impact on North Atlantic weather regimes, but with a smaller amplitude than in reanalysis which can be partly explained by the too slow eastward propagation of the simulated MJO events. The impact of the MJO on the probabilistic skill scores has been assessed. Results indicate that the MJO simulated by the model has a statistically significant impact on weekly mean probabilistic skill scores in the Northern Extratropics, particularly at the time range 19, 25 days. At this time range, the reliability of the probabilistic forecasts over Europe depends strongly on the presence of an MJO event in the initial conditions. This result confirms that the MJO is a major source of predictability in the Extratropics in the sub-seasonal time-scale. Copyright © 2010 Royal Meteorological Society [source] Influence of the Madden,Julian Oscillation on East African rainfall.THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 621 2006I: Intraseasonal variability, regional dependency Abstract The influence of the Madden,Julian Oscillation (MJO) on rainfall amounts over Equatorial East Africa (Kenya and northern Tanzania) is analysed for the period 1979,95 at the intraseasonal (pentad) time-scale. The two rainy seasons (March to May and October to December) are considered. Intraseasonal wet events in East Africa are embedded in large-scale zonal circulation anomaly patterns along the equator, showing distinct eastward propagation. It is further found that these ,wet' events display a clear phasing with respect to the MJO cycle. This phasing is expressed as out-of-phase variations between the Highland and the coastal areas. Such a pattern is suggested to reflect different rain-causing mechanisms. MJO phases leading to wet spells in the western (Highland) region are those associated with the development of large-scale convection in the Africa/Indian Ocean region. These events are unambiguously related to deep convection, fuelled by low-level westerly moisture advection. MJO phases leading to wet spells in the eastern (coastal) region are often those associated with overall suppressed deep convection in the Africa/Indian Ocean region. However, these phases induce moisture advection from Indian Ocean. The possible role of stratiform rainfall or relatively shallow convection in the coastal wet spells observed in this phase is discussed. The contrasting rainfall conditions found in the two regions for the two opposite MJO phases are strongly correlated with the pressure gradient between the Indian and Atlantic Oceans. Copyright © 2006 Royal Meteorological Society [source] Moisture,convection feedback in the tropicsTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 604 2004W. W. Grabowski Abstract This paper discusses the large-scale moisture,convection feedback in the tropics, where spatial fluctuations of deep convection cause perturbations of free-tropospheric moisture which, in turn, affect the spatial distribution of deep convection. A simple heuristic argument using the timescale of free-tropospheric humidity change explains why moisture,convection feedback is particularly relevant for tropical intraseasonal oscillations. The large-scale dynamical context for moisture,convection feedback is investigated in idealized rotating constant-sea-surface-temperature (,tropics everywhere') aquaplanet using cloud-resolving convection parametrization (CRCP; super-parametrization) and a traditional convective parametrization (the Emanuel scheme). The large-scale organization of convection within the equatorial waveguide takes the form of MJO-like (Madden,Julian Oscillation) coherent structures. First, CRCP simulations are performed in which development of large-scale free-tropospheric moisture perturbations is artificially suppressed using relaxation with a timescale of one day. As in previous simulations where much shorter relaxation timescale was used, MJO-like coherences do not develop and, if already present, they disintegrate rapidly. Second, CRCP simulations that start from planetary-scale moisture perturbation in the free troposphere are conducted. The ensuing large-scale velocity perturbations have e-folding times of five and seven days, respectively, for interactive and prescribed radiation simulations. This supports the conjecture that interactive radiation enhances moisture,convection feedback; an enhanced large-scale circulation results from differences in radiative cooling between areas having enhanced and suppressed convectively-generated moisture and cloudiness. Additional support for the role of moisture,convection feedback in intraseasonal oscillations is seen in simulations that apply the Emanuel scheme. The standard configuration of the Emanuel scheme is insensitive to free-tropospheric humidity and results in weak MJO-like coherences. A simple modification of the Emanuel scheme that enhances its sensitivity to free-tropospheric humidity dramatically improves the simulated MJO-like coherences. Copyright © 2004 Royal Meteorological Society [source] Remote weather associated with North Pacific subtropical sea level high propertiesINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2007Richard Grotjahn Abstract Remote events influencing North Pacific (NP) subtropical high properties in monthly and daily data are identified. Variability in the NP during summer is far more strongly dominated by midlatitude events than in South Pacific (SP); low-pass filtering is required to see tropical associations. The dominant pattern in composites, correlations, and regressions is a midlatitude wave train. A stronger NP high was led by higher sea-level pressure (SLP) just east of Japan and lower SLP over central Canada and to a lesser extent over western tropical Pacific. Various mechanisms have been proposed to force the NP high: (1)Heating over southwestern North America (with cooling off the west coast). However, higher temperatures over North America follow stronger SLP over the NP high and occur much further east than postulated. Higher SLP occurs where temperatures are lower over western North America and adjacent ocean. Thermal pattern is consistent with temperature advection between NP high and Canadian low. (2)Precipitation over and near Central America. However, SLP increase on the SE side of the high is led by higher SLP (and higher outgoing longwave radiation (OLR)) along the west coast of Mexico and Central America. Normalized regressions find a very weak lower OLR in North American monsoon preceding stronger NP high, but the region is much smaller in size and magnitude than other significant areas. (3)Precipitation over Indonesia and southeast Asia. Statistics provide some support for lower SLP and OLR over Indonesia preceding higher SLP in the center, west, and northwest sides of NP high. The lower SLP and OLR appear to migrate into southeast Asia, perhaps independently, perhaps from stronger NP high. (4)The NP high has a strong connection to El Niño during winter, but no significant link during summer. Only the south side of NP high appears (weakly) linked to the Madden Julian oscillation (MJO). Copyright © 2006 Royal Meteorological Society [source] Modulation of the intraseasonal rainfall over tropical Brazil by the Madden,Julian oscillationINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2006Everaldo B. De Souza Abstract Fifteen years (1987,2001) of rain gauge-based data are used to describe the intraseasonal rainfall variability over tropical Brazil and its associated dynamical structure. Wavelet analysis performed on rainfall time series showed significant peaks centered roughly in periods of 30,70 days, particularly in the eastern southeastern Amazon and northern northeast Brazil. A significant enhancement of precipitation with maximum anomalies in a northeastward oriented band over tropical Brazil is evidenced from empirical orthogonal function (EOF) analysis of 30,70-day filtered rainfall anomalies during rainy season (January to May). Lagged/lead composites revealed that, on a global scale, the Madden,Julian oscillation (MJO) is the main atmospheric-mechanism modulator of the pluviometric variations on intraseasonal timescale in the eastern Amazon and northeast Brazil. A coherent northward expansion of rainfall across tropical Brazil is evident during the passage of MJO over South America. Regionally, the establishment of a quasi-stationary deep convection band triggered by the simultaneous manifestation of south Atlantic convergence zone (SACZ) and intertropical convergence zone (ITCZ) explains the intensified rainfall over these regions. Such regional mechanisms are dynamically embedded within the eastward-propagating MJO-related large-scale convective envelope along tropical South America/the Atlantic Ocean. These features occur in association with a significant intraseasonal evolution of the lower-level wind and sea-surface temperature (SST) patterns, particularly in the Atlantic Ocean, including a coherent dynamical connection with atmospheric circulation, deep convective activity over South America and rainfall over tropical Brazil. Copyright © 2006 Royal Meteorological Society [source] Remote weather associated with South Pacific subtropical sea-level high propertiesINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2004Richard Grotjahn Abstract The subtropical highs in sea-level pressure (SLP) are little studied and incompletely understood. In recent years, three groups of theories, i.e. tropical divergent circulations, subtropical Rossby wavetrains, and midlatitude frontal cyclone interactions, have been proposed for remote maintenance of these highs. The latter is presented here as a remote forcing of these highs for the first time in the reviewed literature. The focus of the study is upon illuminating associations between these mechanisms and the South Pacific subtropical high in SLP (SP high). Precipitation, outgoing longwave radiation, velocity potential, and divergent winds are used as proxy markers for the remote forcing mechanisms. The tools used include composites, one-point correlations, autocorrelations, cross-correlations, and cross-spectra. Observational evidence, in monthly and daily data, is examined that appears to support each mechanism. Associations seen in monthly data are better understood in daily data at various lags. Convection over Amazonia, coordinated with suppressed convection in the western tropical Pacific, leads to enhanced SLP on the tropical side of the high. Midlatitude weather systems are the strongest influence upon the maximum SLP and the SLP on the higher latitude side of the high. The western side is associated with both middle-and lower-latitude phenomena, such as the South Pacific convergence zone. Various properties of the high have a strong period around 45 days. Associations to the Madden,Julian oscillation and El Niño,southern oscillation are explored and are strong only for the tropical side of the SP high. Copyright © 2004 Royal Meteorological Society [source] The global response to tropical heating in the Madden,Julian oscillation during the northern winterTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 601 2004Adrian J. Matthews Abstract A life cycle of the Madden,Julian oscillation (MJO) was constructed, based on 21 years of outgoing long-wave radiation data. Regression maps of NCEP,NCAR reanalysis data for the northern winter show statistically significant upper-tropospheric equatorial wave patterns linked to the tropical convection anomalies, and extratropical wave patterns over the North Pacific, North America, the Atlantic, the Southern Ocean and South America. To assess the cause of the circulation anomalies, a global primitive-equation model was initialized with the observed three-dimensional (3D) winter climatological mean flow and forced with a time-dependent heat source derived from the observed MJO anomalies. A model MJO cycle was constructed from the global response to the heating, and both the tropical and extratropical circulation anomalies generally matched the observations well. The equatorial wave patterns are established in a few days, while it takes approximately two weeks for the extratropical patterns to appear. The model response is robust and insensitive to realistic changes in damping and basic state. The model tropical anomalies are consistent with a forced equatorial Rossby,Kelvin wave response to the tropical MJO heating, although it is shifted westward by approximately 20° longitude relative to observations. This may be due to a lack of damping processes (cumulus friction) in the regions of convective heating. Once this shift is accounted for, the extratropical response is consistent with theories of Rossby wave forcing and dispersion on the climatological flow, and the pattern correlation between the observed and modelled extratropical flow is up to 0.85. The observed tropical and extratropical wave patterns account for a significant fraction of the intraseasonal circulation variance, and this reproducibility as a response to tropical MJO convection has implications for global medium-range weather prediction. Copyright © 2004 Royal Meteorological Society [source] |