Joint Morphology (joint + morphology)

Distribution by Scientific Domains


Selected Abstracts


Friction and degradation of rock joint surfaces under shear loads

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2001
F. Homand
Abstract The morpho-mechanical behaviour of one artificial granite joint with hammered surfaces, one artificial regularly undulated joint and one natural schist joint was studied. The hammered granite joints underwent 5 cycles of direct shear under 3 normal stress levels ranging between 0.3 and 4 MPa. The regularly undulated joint underwent 10 cycles of shear under 6 normal stress levels ranging between 0.5 and 5 MPa and the natural schist replicas underwent a monotonics shear under 5 normal stress levels ranging between 0.4 and 2.4 MPa. These direct shear tests were performed using a new computer-controlled 3D-shear apparatus. To characterize the morphology evolution of the sheared joints, a laser sensor profilometer was used to perform surface data measurements prior to and after each shear test. Based on a new characterization of joint surface roughness viewed as a combination of primary and secondary roughness and termed by the joint surface roughness, SRs, one parameter termed ,joint surface degradation', Dw, has been defined to quantify the degradation of the sheared joints. Examinations of SRs and Dw prior to and after shearing indicate that the hammered surfaces are more damaged than the two other surfaces. The peak strength of hammered joint with zero-dilatancy, therefore, significantly differs from the classical formulation of dilatant joint strength. An attempt has been made to model the peak strength of hammered joint surfaces and dilatant joints with regard to their surface degradation in the course of shearing and two peak strength criteria are proposed. Input parameters are initial morphology and initial surface roughness. For the hammered surfaces, the degradation mechanism is dominant over the phenomenon of dilatancy, whereas for a dilatant joint both mechanisms are present. A comparison between the proposed models and the experimental results indicates a relatively good agreement. In particular, compared to the well-known shear strength criteria of Ladanyi and Archambault or Saeb, these classical criteria significantly underestimate and overestimate the observed peak strength, respectively, under low and high normal stress levels. In addition and based on our experimental investigations, we put forward a model to predict the evolution of joint morphology and the degree of degradation during the course of shearing. Degradations of the artificial undulated joint and the natural schist joint enable us to verify the proposed model with a relatively good agreement. Finally, the model of Ladanyi and Archambault dealing with the proportion of total joint area sheared through asperities, as, once again, tends to underestimate the observed degradation. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Association between condylar position, joint morphology and craniofacial morphology in orthodontic patients without temporomandibular joint disorders

JOURNAL OF ORAL REHABILITATION, Issue 11 2003
K. Kikuchi
summary, The present study investigated condylar position and joint morphology in adolescent patients and elucidated the possible association between the joint structure and condylar position, and craniofacial morphology. Sixty-five adolescent patients were selected as subjects and their tomograms and lateral cephalograms were analysed. No significant differences in joint spaces were found between the right and left temporomandibular joints. Both the condyles in this population were located slight anteriorly in the glenoid fossa. With respect to the association between condylar position, joint morphology and craniofacial morphology, the ramus plane angle also exhibited significant negative correlations with posterior, lateral and medial joint spaces. Furthermore, there was a significant negative correlation between the gonial angle and the anterior joint space. These findings imply that the condyle was likely to show more posterior position in the glenoid fossa when the mandible exhibited clockwise rotation. In conclusion, the condyle in the adolescent subjects showed a symmetrical anterior position relative to the glenoid fossa. In addition, the joint spaces and it ratios were significantly related to the craniofacial morphology associated with vertical dimension. It is suggested that the condylar position may be affected by craniofacial growth pattern. [source]


Talar morphology, phylogenetic affinities, and locomotor adaptation of a large-bodied amphipithecid primate from the late middle eocene of Myanmar

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Laurent Marivaux
Abstract A well-preserved fossil talus [National Museum of Myanmar Primates (NMMP) 82] of a large-bodied primate is described from the late middle Eocene Pondaung Formation of central Myanmar. The specimen was collected at Thandaung Kyitchaung, a well-known amphipithecid primate,bearing locality near the village of Mogaung. NMMP 82 adds to a meager but growing sample of postcranial remains documenting the large-bodied primates of the Pondaung Formation. This new talus exhibits a suite of features that resemble conditions found in living and fossil haplorhine primates, notably anthropoids. As such, the phylogenetic signal deriving from the morphology of NMMP 82 conflicts with that provided by NMMP 20, a partial skeleton (including a fragmentary calcaneus) of a second large-bodied Pondaung primate showing undoubted adapiform affinities. Analysis subtalar joint compatibility in a hypothetical NMMP 82/NMMP 20 combination (talus/calcaneus) reveals a substantial degree of functional mismatch between these two tarsal bones. The functional incongruence in subtalar joint morphology between NMMP 20 and NMMP 82 is consistent with the seemingly divergent phylogenetic affinities of these specimens, indicating that two higher level taxa of relatively large-bodied primates are documented in the Pondaung Formation. On the basis of its size and morphology, we refer the NMMP 82 talus to the large-bodied amphipithecid Pondaungia. The occurrence of anthropoid-like tali in the Pondaung Formation obviates the need to invoke homoplasy to explain the shared, derived dental characters that are common to amphipithecids and undoubted anthropoids. Functionally, the NMMP 82 talus appears to have pertained to a primate that is engaged in active quadrupedalism in an arboreal environment along broad and subhorizontal branches. The primate taxon represented by NMMP 82 was capable of climbing and leaping, although it was not particularly specialized for either of these activities. Am J Phys Anthropol 143:208,222, 2010. © 2010 Wiley-Liss, Inc. [source]


Joint orientation and function in great ape and human proximal pedal phalanges

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Nicole L. Griffin
Abstract Previous studies have referred to the degree of dorsal canting of the base of the proximal phalanx as an indicator of human-like metatarsophalangeal joint function and thus a diagnostic trait of habitual bipedality in the fossil record. Here, we used a simple method to investigate differences in forefoot function on a finer scale. Building on Duncan et al.'s (Am J Phys Anthropol 93 [1994] 67,81) research, we tested whether dorsal canting reflects differences between sexes in locomotor behavior, whether habitual shoe wear influences dorsal canting in humans, and whether proximal joint morphology differs between rays in Pan and humans. Our results corroborate previous research in showing that humans have proximal phalanges with joint orientations that are significantly more dorsal than, but overlap with, those of great apes. We also found that male gorillas have significantly more dorsally canted second proximal phalanges than their female counterparts, while the opposite pattern between the sexes was found in Pan troglodytes. Inter-ray comparisons indicate that Pan have more dorsally canted first proximal phalanges than second proximal phalanges, while the opposite pattern was found in humans. Minimally shod humans have slightly but significantly more dorsally canted second proximal phalanges than those of habitually shod humans, indicating that phalanges of unshod humans provide the most appropriate comparative samples for analyses of early hominins. Overall, our analysis suggests that though the measurement of dorsal canting is limited in its sensitivity to certain intraspecific differences in function, phalangeal joint orientation reflects interspecific differences in joint function, with the caveat that different patterns of forefoot function during gait can involve similar articular sets of metatarsophalangeal joints. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Development of an anatomically based whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata)

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009
Naomichi Ogihara
Abstract We constructed a three-dimensional whole-body musculoskeletal model of the Japanese macaque (Macaca fuscata) based on computed tomography and dissection of a cadaver. The skeleton was modeled as a chain of 20 bone segments connected by joints. Joint centers and rotational axes were estimated by joint morphology based on joint surface approximation using a quadric function. The path of each muscle was defined by a line segment connecting origin to insertion through an intermediary point if necessary. Mass and fascicle length of each were systematically recorded to calculate physiological cross-sectional area to estimate the capacity of each muscle to generate force. Using this anatomically accurate model, muscle moment arms and force vectors generated by individual limb muscles at the foot and hand were calculated to computationally predict muscle functions. Furthermore, three-dimensional whole-body musculoskeletal kinematics of the Japanese macaque was reconstructed from ordinary video sequences based on this model and a model-based matching technique. The results showed that the proposed model can successfully reconstruct and visualize anatomically reasonable, natural musculoskeletal motion of the Japanese macaque during quadrupedal/bipedal locomotion, demonstrating the validity and efficacy of the constructed musculoskeletal model. The present biologically relevant model may serve as a useful tool for comprehensive understanding of the design principles of the musculoskeletal system and the control mechanisms for locomotion in the Japanese macaque and other primates. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source]


Functional adaptation of the femoral head to voluntary exercise

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 7 2006
Jeffrey H. Plochocki
Abstract The functional adaptation of limb joints during postnatal ontogeny is necessary to maintain proper joint function. Joint form is modified primarily through differential rates of articular cartilage proliferation across articular surfaces during endochondral growth. This process is hypothesized to be mechanically regulated by the magnitude and orientation of stresses in the articular cartilage. However, the adaptation of limb joint morphology to the mechanical environment is poorly understood. We investigate the effects of voluntary exercise on femoral head morphology in 7-week-old female mice of the inbred strain C57BL/6J. The mice were divided into a control group and a group treated with voluntary access to an activity wheel for the duration of the 4-week study. Histomorphometric comparisons of chondral and osseous joint tissue of the proximal femur were made between control and exercise treatment groups. We find that exercised mice have significantly thicker articular cartilage with greater chondral tissue area and cellularity. Exercised mice also exhibit significantly greater bone tissue area and longer and flatter subchondral surfaces. No significant difference is found in the curvature of the articular cartilage or the length of the chondral articular surface between groups. These data suggest that a complex mechanistic relationship exists between joint stress and joint form. Joint tissue response to loading is multifaceted, involving both size and shape changes. Our data support the hypothesis that joint growth is ontogenetically plastic. Mechanical loading significantly influences chondral and subchondral tissue proliferation to provide greater support against increased mechanical loading. Anat Rec Part A, 288A:776,781, 2006 © 2006 Wiley-Liss, Inc. [source]


Microanatomy of the Mandibular Symphysis in Lizards: Patterns in Fiber Orientation and Meckel's Cartilage and Their Significance in Cranial Evolution

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2010
Casey M. Holliday
Abstract Although the mandibular symphysis is a functionally and evolutionarily important feature of the vertebrate skull, little is known about the soft-tissue morphology of the joint in squamate reptiles. Lizards evolved a diversity of skull shapes and feeding behaviors, thus it is expected that the morphology of the symphysis will correspond with functional patterns. Here, we present new histological data illustrating the morphology of the joint in a number of taxa including iguanians, geckos, scincomorphs, lacertoids, and anguimorphs. The symphyses of all taxa exhibit dorsal and ventral fibrous portions of the joints that possess an array of parallel and woven collagen fibers. The middle and ventral portions of the joints are complemented by contributions of Meckel's cartilage. Kinetic taxa have more loosely built symphyses with large domains of parallel-oriented fibers whereas hard biting and akinetic taxa have symphyses primarily composed of dense, woven fibers. Whereas most taxa maintain unfused Meckel's cartilages, iguanians, and geckos independently evolved fused Meckel's cartilages; however, the joint's morphologies suggest different developmental mechanisms. Fused Meckel's cartilages may be associated with the apomorphic lingual behaviors exhibited by iguanians (tongue translation) and geckos (drinking). These morphological data shed new light on the functional, developmental, and evolutionary patterns displayed by the heads of lizards. Anat Rec 293:1350,1359, 2010. © 2010 Wiley-Liss, Inc. [source]