Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Jasmonate

  • methyl jasmonate

  • Terms modified by Jasmonate

  • jasmonate treatment

  • Selected Abstracts

    Synthesis of cis-Hedione® and Methyl Jasmonate via Cascade Baylis,Hillman Reaction and Claisen Ortho Ester Rearrangement

    Christian Chapuis
    The exocyclically unsaturated conjugated keto esters 10, obtained via a Claisen ortho ester rearrangement of the allylic hydroxy ketones 9, were either directly hydrogenated or partially isomerized into the endocyclically unsaturated tetrasubstituted didehydrojasmonoid intermediates 14, prior to a more selective hydrogenation with Pd/C in cyclohexane to the disubstituted oxocyclopentaneacetates 15 (Scheme,2). The key intermediates 9 were obtained either by a four-step sequence, including acetal protection/deprotection from enone 1, in the specific case of hydroxy ketone 9a (Scheme,1), or more directly and generally by a Baylis,Hillman reaction from cyclopent-2-en-1-one (16) and the appropriate aldehydes 17 (Scheme,2). The judicious choice of these aldehydes opens versatile modifications for the stereoselective introduction of the partially cis - or epimerized trans -C(2) jasmonoid side chain, while the Baylis,Hillman reaction, catalyzed by chiral [1,1,-binaphthalene]-2,2,-diols (BINOLs) 19 (Scheme,3), may be efficiently conducted in a one-pot cascade fashion including the ortho ester Claisen rearrangement. [source]

    Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues

    Maria Antunez-Lamas
    Summary Jasmonate is a key signalling compound in plant defence that is synthesized in wounded tissues. In this work, we have found that this molecule is also a strong chemoattractant for the phythopathogenic bacteria Dickeya dadantii (ex- Erwinia chysanthemi). Jasmonic acid induced the expression of a subset of bacterial genes possibly involved in virulence/survival in the plant apoplast and bacterial cells pre-treated with jasmonate showed increased virulence in chicory and Saintpaulia leaves. We also showed that tissue wounding induced bacterial spread through the leaf surface. Moreover, the jasmonate-deficient aos1 Arabidopsis thaliana mutant was more resistant to bacterial invasion by D. dadantii than wild-type plants. These results are consistent with the hypothesis that sensing jasmonic acid by this bacterium helps the pathogen to ingress inside plant tissues. [source]

    Fine-Tuning Plant Defence Signalling: Salicylate versus Jasmonate

    PLANT BIOLOGY, Issue 1 2006
    G. J. M. Beckers
    Abstract: Plant defences against pathogens and herbivorous insects form a comprehensive network of interacting signal transduction pathways. The signalling molecules salicylic acid (SA) and jasmonic acid (JA) play important roles in this network. SA is involved in signalling processes providing systemic acquired resistance (SAR), protecting the plant from further infection after an initial pathogen attack. SAR is long-lasting and provides broad spectrum resistance to biotrophic pathogens that feed on a living host cell. The regulatory protein NPR1 is a central positive regulator of SAR. SA-activated NPR1 localizes to the nucleus where it interacts with TGA transcription factors to induce the expression of a large set of pathogenesis-related proteins that contribute to the enhanced state of resistance. In a distinct signalling process, JA protects the plant from insect infestation and necrotrophic pathogens that kill the host cell before feeding. JA activates the regulatory protein COI1 that is part of the E3 ubiquitin ligase-containing complex SCFCOI1, which is thought to derepress JA-responsive genes involved in plant defence. Both synergistic and antagonistic interactions have been observed between SA- and JA-dependent defences. NPR1 has emerged as a critical modulator of cross-talk between the SA and JA signal and is thought to aid in fine tuning defence responses specific to the encountered attacker. Here we review SA- and JA-dependent signal transduction and summarize our current understanding of the molecular mechanisms of cross-talk between these defences. [source]

    Enantioselective Synthesis and Absolute Stereochemistry of Both the Enantiomers of trans-Magnolione, a Fragrance Structurally Related to trans-Methyl Jasmonate.

    CHEMINFORM, Issue 40 2004
    Maria Irene Donnoli
    No abstract is available for this article. [source]

    Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae

    Anthony J. Boughton
    Abstract Recent advances in the understanding of plant signaling pathways have opened the way for using elicitor-induced plant resistance as a tactic for protecting plants against arthropod pests. Four common elicitors of induced responses in tomato, Lycopersicon esculentum Mill. (Solanaceae), were evaluated with regard to phytotoxicity, induction of plant defensive proteins, and effects on population growth and fecundity of a common pest, the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Ethephon and methyl jasmonate (MJ) treatments caused varying degrees of phytotoxicity. Ethephon caused pronounced changes in plant growth form and severe, dose-dependent negative impacts on plant growth and flowering. Effects with MJ were milder, but still caused temporary inhibition of development, leading to smaller plants and delayed flowering. The commercial elicitors benzothiadiazole (BTH) and harpin did not cause detectable phytotoxicity. The highest doses of ethephon and MJ significantly increased leaf peroxidase (POD) levels but only MJ treatments significantly increased polyphenol oxidase (PPO) levels. BTH and harpin had no detectable effects on POD and PPO. Populations of green peach aphids grew significantly more slowly on plants treated with BTH or MJ than on control plants or plants treated with harpin or ethephon. Slowed aphid population growth on BTH-treated plants was due to significant reductions in aphid fecundity, although this was independent of changes in time to onset of reproduction or time to death. Aphid fecundity was also reduced on MJ-treated plants relative to controls, but this difference was not statistically significant, suggesting that other mechanisms are involved in slowing aphid population growth on MJ-treated plants. Growth of aphid populations on plants treated with a MJ,BTH mixture was reduced almost as much as with treatments of MJ alone, suggesting that antagonism between JA-dependant and SA-dependent plant signaling pathways is only mild with regard to induced defenses against aphids. [source]

    NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco's defense response

    FEBS JOURNAL, Issue 19 2010
    Hao Huang
    A cDNA library from tobacco inoculated with Rhizoctonia solani was constructed, and several cDNA fragments were identified by differential hybridization screening. One cDNA clone that was dramatically repressed, NtKTI1, was confirmed as a member of the Kunitz plant proteinase inhibitor family. RT-PCR analysis revealed that NtKTI1 was constitutively expressed throughout the whole plant and preferentially expressed in the roots and stems. Furthermore, RT-PCR analysis showed that NtKTI1 expression was repressed after R. solani inoculation, mechanical wounding and salicylic acid treatment, but was unaffected by methyl jasmonate, abscisic acid and NaCl treatment. In vitro assays showed that NtKTI1 exerted prominent antifungal activity towards R. solani and moderate antifungal activity against Rhizopus nigricans and Phytophthora parasitica var. nicotianae. Bioassays of transgenic tobacco demonstrated that overexpression of NtKTI1 enhanced significantly the resistance of tobacco against R. solani, and the antisense lines exhibited higher susceptibility than control lines towards the phytopathogen. Taken together, these studies suggest that NtKTI1 may be a functional Kunitz trypsin inhibitor with antifungal activity against several important phytopathogens in the tobacco defense response. [source]

    Analysis of the enantiomeric ratios of chiral components in absolute jasmine

    S. Tamogami
    Abstract Determination of the enantiomeric ratios of chiral components in absolute jasmine, an important raw fragrance material, was studied. Jasmine oils from Egypt, India and France were employed. It was remarkable that the enantiomeric excess of most of these chiral components was not 100% ee. There was a significant difference in the ratios of enantiomers of several characteristic aroma compounds among these products. In particular methyl jasmonate in Indian jasmine oil contains less of the major (1R, 2R)-isomer compared with those of France and Egypt. Copyright © 2001 John Wiley & Sons, Ltd. [source]

    Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae)

    L. Brunissen
    Abstract Plant induced responses are activated by multiple biotic and abiotic stresses, and may affect the interactions between a plant and phytophagous insects. The objective of this work was to evaluate the effects of different stresses inflicted to potato plants (Solanum tuberosum) on the potato aphid (Macrosiphum euphorbiae). Abiotic wounding, biotic wounding by Leptinotarsa decemlineata and treatment with volatile methyl jasmonate (MeJA) were evaluated with regard to the orientation behaviour, the feeding behaviour and the development of the potato aphids. Dual-choice olfactometry showed that plants treated with MeJA lost their attractiveness for the potato aphids, while both abiotic and biotic wounding did not alter the orientation of aphids. Electropenetrography revealed that the feeding behaviour of aphids was only slightly disturbed by a previous L. decemlineata wounding, while it was highly disturbed by mechanical wounding and MeJA treatment. Aphid nymph survival was reduced on mechanically wounded plants, the pre-reproductive period was lengthened and the fecundity reduced on plants treated with MeJA. Our results bring new information about the effects of various stresses inflicted to S. tuberosum on M. euphorbiae. We showed that wounding and MeJA treatment induced an antixenosis resistance in potato plants against M. euphorbiae, which may influence aphid colonization processes. [source]


    The elicitation of cystatin accumulation in tomato leaves was studied with mature and seedling cv. Bonnie Best. Repetitive mechanical injury (MI) or methyl jasmonate (MJ) treatment of seedlings elicited plentiful cystatin accumulation in the leaves when plants were held at 30C under continuous lighting. Cystatin accumulation in leaves of MI seedlings decreased by 50% when incubated at a reduced light period of 12 h light/day. Cystatin accumulation in MJ treated plants was not influenced by reducing the light period from 24 h to 12 h/day. Cystatin accumulation after MJ treatment was optimal at 35C and negligible at 40C. At ambient field conditions (I8,33C), MJ treated seedlings still accumulated a significant amount of cystatin; however, very little cystatin accumulated in leaves of MI seedlings under these conditions of lower temperature and light exposure. The leaves of mature plants accumulated less cystatin after MJ or MI treatment than did those of seedlings. [source]


    ABSTRACT Maintaining the quality of a fresh-cut fruit or vegetable product is a major concern and a priority in the development and in the production of fresh-cut produce products of the industry. The industry has been searching for alternative methods to protect fresh-cut produce from decay and to prolong shelf life. The objective of this research is to enhance the quality and the shelf life of fresh-cut pineapple by exposure to methyl jasmonate (MJ). The exposure of the diced pineapple to a MJ emulsion at a concentration of 10,4 M for 5 min in a sealed container decreased microbiological growth by 3 logs after 12 days of storage at 7C, compared with the control pineapple. Methyl jasmonate as vapor or as dip did not affect the firmness or the color of the fruit. Methyl jasmonate may be a practical treatment to ensure the safety and the quality of fresh-cut pineapple and other fruits and vegetables. [source]

    Gibberellin and Jasmonate Crosstalk during Stamen Development

    Jinrong Peng
    Abstract Gibberellin (GA) and jasmonate (JA) are two types of phytohormones that play important roles during stamen development. For example, Arabidopsis plants deficient in either of GA or JA develop short stamens. An apparent question to ask is whether GA action and JA action during stamen filament development are independent of each other or are in a hierarchy. Recent studies showed that GA modulates the expression of genes essential for JA biosynthesis to promote JA production and high levels of JA will induce the expression of three MYB genes MYB21, MYB24 and MYB57. These three MYB genes are crucial factors for the normal development of stamen filament in Arabidopsis. [source]

    W55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress Responses

    Zhao-Shi Xu
    Abstract Protein kinases play crucial roles in response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5, cDNA ends (5,-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1 029 -bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonate, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexpressing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions. [source]

    Syntheses of deuterated jasmonates for mass spectrometry and metabolism studies

    Patrycja W. Galka
    Abstract Jasmonic acid and its metabolites play an essential role in the regulation of plant development and systemic defense responses. Isotopically labeled standards are required to quantify plant hormones for metabolism studies using mass spectrometry. A convenient method for the preparation of deuterated analogs of jasmonates is demonstrated. Modification of commercially available methyl jasmonate by base-catalyzed proton/deuterium exchange or Wittig reaction introduces either two or three heavy atoms into a molecule. Copyright © 2005 John Wiley & Sons, Ltd. [source]

    Through oven transfer adsorption,desorption interface for the analysis of methyl jasmonate in aromatic samples by on-line RPLC-GC

    Gema Flores
    Abstract A fully automated method for the determination of medium volatility compounds in aromatic samples was developed. Specifically, the determination of methyl jasmonate in jasmine fragrances was performed by using the through oven transfer adsorption,desorption (TOTAD) interface for the on-line coupling between RPLC-GC. A study of the most relevant variables involved in the performance of the TOTAD interface for medium volatility compounds was carried out by testing different values of helium flow (100, 300, 400, and 500 mL/min), transfer speed (0.1, 0.3, 0.5, and 2.0 mL/min), and methanol/water percentages (86:14, 85:15, 83:17, 80:20, and 70:30). The method developed provided satisfactory repeatability (RSD for retention times of 0.15% and for peak areas of 9.4%) and recovery (71%) as well as excellent LOD (0.01 mg/L) for methyl jasmonate in commercial jasmine essence under the experimental conditions selected as optimum. Additional advantages of the automated RPLC-TOTAD-GC method proposed in the present work are its rapidness, reliability, and the possibility of directly introducing the sample with no further pretreatment. [source]

    Enantiomeric purity of (+/,)-methyl jasmonate in fresh leaf samples and commercial fragrances

    Maria L. Ruiz del Castillo
    Abstract The enantiomeric purity of (+/,)-methyl jasmonate in fresh leaf material of Jasminum from different species and Rosmarinus officinalis was examined by solid-phase microextraction-GC-MS (SPME-GC-MS). For comparison with these natural products, commercial jasmine and rosemary fragrances were also studied. The extraction conditions were selected as a result of testing different values of temperature (40, 50, and 60°C) and time (2, 15, 30, and 40 min). The results obtained in this work revealed a range of enantiomeric excesses for (+/,)-methyl jasmonate varying from 13 to 95% depending on the Jasminum specie considered. In contrast, (,)-methyl jasmonate always occurred as a pure enantiomer in all R. officinalis samples studied. This implies those Jasminum species in which the enantiomeric purity of (,)-methyl jasmonate is high enough and any R. officinalis sample might be used as natural sources of pure (,)-methyl jasmonate. Concerning the commercial fragrances, those of jasmine showed enantiomeric composition of (,)-methyl jasmonate ranging from 1 to 15% whereas those of rosemary exhibited practically the pure (,)-methyl jasmonate. This fact suggests the addition and nonaddition of the racemic mixture of methyl jasmonate to the commercial jasmine and rosemary samples, respectively. [source]

    Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues

    Maria Antunez-Lamas
    Summary Jasmonate is a key signalling compound in plant defence that is synthesized in wounded tissues. In this work, we have found that this molecule is also a strong chemoattractant for the phythopathogenic bacteria Dickeya dadantii (ex- Erwinia chysanthemi). Jasmonic acid induced the expression of a subset of bacterial genes possibly involved in virulence/survival in the plant apoplast and bacterial cells pre-treated with jasmonate showed increased virulence in chicory and Saintpaulia leaves. We also showed that tissue wounding induced bacterial spread through the leaf surface. Moreover, the jasmonate-deficient aos1 Arabidopsis thaliana mutant was more resistant to bacterial invasion by D. dadantii than wild-type plants. These results are consistent with the hypothesis that sensing jasmonic acid by this bacterium helps the pathogen to ingress inside plant tissues. [source]

    Salicylic acid confers resistance to a biotrophic rust pathogen, Puccinia substriata, in pearl millet (Pennisetum glaucum)

    SUMMARY Studies were undertaken to assess the induction of defence response pathways in pearl millet (Pennisetum glaucum) in response to infection with the leaf rust fungus Puccinia substriata. Pretreatment of pearl millet with salicylic acid (SA) conferred resistance to a virulent isolate of the rust fungus, whereas methyl jasmonate (MeJA) did not significantly reduce infection levels. These results suggest that the SA defence pathway is involved in rust resistance. In order to identify pearl millet genes that are specifically regulated in response to SA and not MeJA, and thus could play a role in resistance to P. substriata, gene expression profiling was performed. Substantial overlap in gene expression responses between the treatments was observed, with MeJA and SA treatments exhibiting 17% co-regulated transcripts. However, 34% of transcripts were differentially expressed in response to SA treatment, but not in response to MeJA treatment. SA-responsive transcripts represented genes involved in SA metabolism, defence response, signal transduction, protection from oxidative stress and photosynthesis. The expression profiles of pearl millet plants after treatment with SA or MeJA were more similar to one another than to the response during a compatible infection with P. substriata. However, some SA-responsive genes were repressed during P. substriata infection, indicating possible manipulation of host responses by the pathogen. [source]

    The potato StLTPa7 gene displays a complex Ca2+ -associated pattern of expression during the early stage of potato,Ralstonia solanacearum interaction

    SUMMARY Although nonspecific lipid transfer proteins (nsLTPs) are widely expressed during plant defence responses to pathogens, their functions and regulation are not fully understood. In this article, we report the isolation of a cDNA for the new nsLTP, StLTPa7, from cultivated potato (Solanum tuberosum) infected with Ralstonia solanacearum. The cDNA was predicted to encode a type 1 nsLTP containing an N-terminal signal sequence and possessing the characteristic features of nsLTPs. A phylogenetic analysis showed that the encoded amino acid sequence of the nsLTP was similar to those of other previously reported plant nsLTPs, which contain a putative calmodulin-binding site consisting of approximately 12 highly conserved amino acid residues. The expression of the StLTPa7 gene was studied during the early stages of potato,R. solanacearum interaction using real-time quantitative polymerase chain reaction (qRT-PCR) and Northern analyses, and a complex calcium (Ca2+)-associated pattern of expression was observed with the following features: (i) transcripts of the StLTPa7 gene were systemically up-regulated by infection with R. solanacearum; (ii) the StLTPa7 gene was stimulated by salicylic acid, methyl jasmonate, abscisic acid and Ca2+; (iii) qRT-PCR showed that, during the early stage of R. solanacearum infection, nsLTP transcripts accumulated over a time course that paralleled that of Ca2+ accumulation, detected using environmental scanning electron microscopy and energy-dispersive X-ray (EDAX) spectrometry; and (iv) the Ca2+ channel blocker, ruthenium red, partially blocked R. solanacearum -induced StLTPa7 expression. This report represents the first use of EDAX analysis to establish a synchrony between Ca2+ accumulation and nsLTP expression in response to potato,R. solanacearum interactions. Collectively, these results suggest that StLTPa7 may be a pathogen- and Ca2+ -responsive plant defence gene. [source]

    Priming of plant innate immunity by rhizobacteria and ,-aminobutyric acid: differences and similarities in regulation

    NEW PHYTOLOGIST, Issue 2 2009
    Sjoerd Van der Ent
    Summary ,,Pseudomonas fluorescens WCS417r bacteria and ,-aminobutyric acid can induce disease resistance in Arabidopsis, which is based on priming of defence. ,,In this study, we examined the differences and similarities of WCS417r- and ,-aminobutyric acid-induced priming. ,,Both WCS417r and ,-aminobutyric acid prime for enhanced deposition of callose-rich papillae after infection by the oomycete Hyaloperonospora arabidopsis. This priming is regulated by convergent pathways, which depend on phosphoinositide- and ABA-dependent signalling components. Conversely, induced resistance by WCS417r and ,-aminobutyric acid against the bacterial pathogen Pseudomonas syringae are controlled by distinct NPR1-dependent signalling pathways. As WCS417r and ,-aminobutyric acid prime jasmonate- and salicylate-inducible genes, respectively, we subsequently investigated the role of transcription factors. A quantitative PCR-based genome-wide screen for putative WCS417r- and ,-aminobutyric acid-responsive transcription factor genes revealed distinct sets of priming-responsive genes. Transcriptional analysis of a selection of these genes showed that they can serve as specific markers for priming. Promoter analysis of WRKY genes identified a putative cis -element that is strongly over-represented in promoters of 21 NPR1-dependent, ,-aminobutyric acid-inducible WRKY genes. ,,Our study shows that priming of defence is regulated by different pathways, depending on the inducing agent and the challenging pathogen. Furthermore, we demon-strated that priming is associated with the enhanced expression of transcription factors. [source]

    Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis

    NEW PHYTOLOGIST, Issue 4 2008
    Elena Loreti
    Summary ,,Anthocyanins are secondary metabolites, which play an important role in the physiology of plants. Both sucrose and hormones regulate anthocyanin synthesis. Here, the interplay between sucrose and plant hormones was investigated in the expression of sucrose-regulated genes coding for anthocyanin biosynthetic enzymes in Arabidopsis seedlings. ,,The expression pattern of 14 genes involved in the anthocyanin biosynthetic pathway, including two transcription factors (PAP1, PAP2), was analysed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) in Arabidopsis seedlings treated with sucrose and plant hormones. ,,Sucrose-induction of the anthocyanin synthesis pathway was repressed by the addition of gibberellic acid (GA) whereas jasmonate (JA) and abscisic acid (ABA) had a synergic effect with sucrose. The gai mutant was less sensitive to GA-dependent repression of dihydroflavonol reductase. This would seem to prove that GAI signalling is involved in the crosstalk between sucrose and GA in wild-type Arabidopsis seedlings. Conversely, the inductive effect of sucrose was not strictly ABA mediated. Sucrose induction of anthocyanin genes required the COI1 gene, but not JAR1, which suggests a possible convergence of the jasmonate- and sucrose-signalling pathways. ,,The results suggest the existence of a crosstalk between the sucrose and hormone signalling pathways in the regulation of the anthocyanin biosynthetic pathway. [source]

    Overexpression of the apple alcohol acyltransferase gene alters the profile of volatile blends in transgenic tobacco leaves

    Dapeng Li
    Alcohol acyltransferases (AATs) are key enzymes in ester biosynthesis. Previous studies have found that AAT may be a stress-related gene. To investigate further the function of the apple alcohol acyltransferase gene (MdAAT2), transgenic tobacco plants overexpressing MdAAT2 were generated. Gas chromatography,mass spectroscopy analysis showed that the volatile blends were altered in these transgenic tobacco leaves. Although no apple-fruity volatile esters were detected in transgenic tobacco leaves, methyl caprylate, methyl caprate, and methyl dodecanoate were newly generated, and the concentrations of methyl benzoate and methyl tetradecanoate were significantly increased, suggesting that MdAAT2 may use medium-chain fatty acyl CoA and benzoyl-CoA as acyl donors together with methanol acceptors as substrates. Surprisingly, the concentrations of linalool were significantly increased in transgenic tobacco leaves, which may mediate the repellent effect on Myzus persicae (Sulzer) aphids. Using methyl jasmonate (MeJA) and wounding treatments, we found that MdAAT2 may substitute for the partial ability of MeJA to induce the production of linalool in transgenic plants. These data suggest that MdAAT2 may be involved in the response to the MeJA signal and may play a role in the response to biotic and abiotic stress. [source]

    Disease stress-inducible genes of tobacco: expression profile of elicitor-responsive genes isolated by subtractive hybridization

    Daigo Takemoto
    In order to investigate the change in mRNA profile during tobacco disease response, a subtractive hybridization procedure was used to generate a cDNA library for genes induced in tobacco (Nicotiana tabacum cv. Samsun NN) treated with oomycete elicitor. Database searches with the randomly isolated genes revealed that this cDNA library was enriched for reported disease stress-responsive genes such as pathogenesis-related proteins and cell wall protein genes. The expressions of eight newly isolated genes were induced by inoculation with the non-pathogenic bacteria, Pseudomonas syringae pv. glycinea. The NtEIGs (N.tabacumelicitor- inducible genes) showed similarity to genes for stellacyanin-like protein (NtEIG-A1), glutathione peroxidase (NtEIG-C08), extensin-like protein (NtEIG-C29), WRKY transcription factor (NtEIG-D48), glycine rich protein (NtEIG-E17), , -1, 3-glucanase-like protein (NtEIG-E76), photoassimilate-responsive protein-1 (NtEIG-E80) and wound-induced protein (NtEIG-D10). The expression patterns of NtEIGs in tobacco leaf in response to P. syringae pv. glycinea, salicylic acid (SA), methyl jasmonate (MeJA) and wound stress were analysed. The individual expression patterns of NtEIGs indicate that the transcriptional activation of NtEIGs is regulated by various signals and the products of NtEIGs are involved in different processes at different stages of the plant defence responses. [source]

    Phylogenetic and transcriptional analysis of a strictosidine synthase-like gene family in Arabidopsis thaliana reveals involvement in plant defence responses

    PLANT BIOLOGY, Issue 1 2009
    M. M. Sohani
    Abstract Protein domains with similarity to plant strictosidine synthase-like (SSL) sequences have been uncovered in the genomes of all multicellular organisms sequenced so far and are known to play a role in animal immune responses. Among several distinct groups of Arabidopsis thaliana SSL sequences, four genes (AtSSL4,AtSSL7) arranged in tandem on chromosome 3 show more similarity to SSL genes from Drosophila melanogaster and Caenorhabditis elegans than to other Arabidopsis SSL genes. To examine whether any of the four AtSSL genes are immune-inducible, we analysed the expression of each of the four AtSSL genes after exposure to microbial pathogens, wounding and plant defence elicitors using real-time quantitative RT-PCR, Northern blot hybridisation and Western blot analysis with antibodies raised against recombinant AtSSL proteins. While the AtSSL4 gene was constitutively expressed and not significantly induced by any treatment, the other three AtSSL genes were induced to various degrees by plant defence signalling compounds, such as salicylic acid, methyl jasmonate and ethylene, as well as by wounding and exposure to the plant pathogens Alternaria brassicicola and cucumber mosaic virus. Our data demonstrate that the four SSL-coding genes are regulated individually, suggesting specific roles in basal (SSL4) and inducible (SSL5-7) plant defence mechanisms. [source]

    Functional analysis of rice NPR1 -like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility,

    Yuexing Yuan
    Summary The key regulator of salicylic acid (SA)-mediated resistance, NPR1, is functionally conserved in diverse plant species, including rice (Oryza sativa L.). Investigation in depth is needed to provide an understanding of NPR1 -mediated resistance and a practical strategy for the improvement of disease resistance in the model crop rice. The rice genome contains five NPR1 -like genes. In our study, three rice homologous genes, OsNPR1/NH1, OsNPR2/NH2 and OsNPR3, were found to be induced by rice bacterial blight Xanthomonas oryzae pv. oryzae and rice blast Magnaporthe grisea, and the defence molecules benzothiadiazole, methyl jasmonate and ethylene. We confirmed that OsNPR1 is the rice orthologue by complementing the Arabidopsis npr1 mutant. Over-expression of OsNPR1 conferred disease resistance to bacterial blight, but also enhanced herbivore susceptibility in transgenic plants. The OsNPR1-green fluorescent protein (GFP) fusion protein was localized in the cytoplasm and moved into the nucleus after redox change. Mutations in its conserved cysteine residues led to the constitutive localization of OsNPR1(2CA)-GFP in the nucleus and also abolished herbivore hypersensitivity in transgenic rice. Different subcellular localizations of OsNPR1 antagonistically regulated SA- and jasmonic acid (JA)-responsive genes, but not SA and JA levels, indicating that OsNPR1 might mediate antagonistic cross-talk between the SA- and JA-dependent pathways in rice. This study demonstrates that rice has evolved an SA-mediated systemic acquired resistance similar to that in Arabidopsis, and also provides a practical approach for the improvement of disease resistance without the penalty of decreased herbivore resistance in rice. [source]

    No interaction between methyl jasmonate and ozone in Pima cotton: growth and allocation respond independently to both

    PLANT CELL & ENVIRONMENT, Issue 5 2010
    D. A. GRANTZ
    ABSTRACT Ozone (O3) is damaging to plants, inducing signalling pathways involving antagonism between jasmonates and ethylene. These pathways mediate O3 responses, particularly to acute exposure, and their manipulation protected several species against acute and chronic O3. We use chronic daily exposure of up to 163 ppb O3, and twice weekly application of up to 320 µg plant,1 methyl jasmonate (MeJA) to test two hypothesizes: 1) a low rate of MeJA does not affect growth but increases O3 sensitivity; 2) a high rate inhibits growth but reduces O3 sensitivity. Both hypotheses were rejected. Growth declined with increases in both MeJA and O3. MeJA at 40 µg plant,1 caused no direct effect, and at 160 µg plant,1 reduced growth similarly at all O3. Neither rate altered O3 sensitivity. These additive responses are not consistent with protection by MeJA in this system. They may reflect inter-specific differences in signalling, since O3 concentrations used here exceeded some reported acute exposures. Alternatively, parallel responses to O3 and MeJA may suggest that O3 -induced jasmonates play a developmental role in chronic response but no protective role in the absence of lesions characteristic of acute exposure. MeJA appears useful as a probe of these mechanisms. [source]

    Root growth dynamics of Nicotiana attenuata seedlings are affected by simulated herbivore attack

    PLANT CELL & ENVIRONMENT, Issue 10 2007
    ABSTRACT Many studies demonstrate resource-based trade-offs between growth and defence on a large timescale. Yet, the short-term dynamics of this growth reaction are still completely unclear, making it difficult to explain growth-defence trade-offs mechanistically. In this study, image-based non-destructive methods were used to quantify root growth reactions happening within hours following simulated herbivore attack. The induction of wound reactions in Nicotiana attenuata in the seedling stage led to transiently decreased root growth rates. Application of the oral secretion of the specialist herbivore Manduca sexta to the leaves led to a transient decrease in root growth that was more pronounced than if a mere mechanical wounding was imposed. Root growth reduction was more pronounced than leaf growth reduction. When fatty acid,amino acid conjugates (FACs) were applied to wounds, root growth reduction occurred in the same intensity as when oral secretion was applied. Timing of the transient growth reduction coincided with endogenous bursts of jasmonate (JA) and ethylene emissions reported in literature. Simulation of a wound response by applying methyl jasmonate (MeJA) led to more prolonged negative effects on root growth. Increased nicotine concentrations, trichome lengths and densities were observed within 72 h in seedlings that were treated with MeJA or that were mechanically wounded. Overall, these reactions indicate that even in a very early developmental stage, the diversion of plant metabolism from primary (growth-sustaining) to secondary (defence-related) metabolism can cause profound alterations of plant growth performance. [source]

    Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower

    PLANT PATHOLOGY, Issue 3 2007
    P. Letousey
    Resistance to the dicotyledenous parasite Orobanche cumana in sunflower is characterized by a low number of parasitic attachments and a confinement of the parasite in host tissues leading to its necrosis. To help understand what determines such resistance mechanisms, molecular, biochemical and histological approaches were employed before (early response) and after (late response) attachment of the broomrape parasite to susceptible (2603) and resistant (LR1) sunflower genotypes. The expression patterns of 11 defence-related genes known to be involved in different metabolic pathways (phenylpropanoids, jasmonate, ethylene) and/or in resistance mechanisms against microorganisms were investigated. RT-PCR and cDNA blot experiments revealed that the resistant genotype exhibited a stronger overall defence response against O. cumana than the susceptible one, involving marker genes of the jasmonate (JA) and salicylic acid (SA) pathways. Among them, the SA-responsive gene, def. (defensin), appeared to be characteristic of LR1 sunflower resistance. However, no JA accumulation and similar SA contents (250,300 ng g,1 FW) were measured by GC/MS in both genotypes, parasitized or not. In addition, three cDNAs, isolated by a suppression-subtractive hybridization, were shown to be strongly induced only in the resistant genotype 8 days post-inoculation, when the first O. cumana attachments occurred. These genes, putatively encoding a methionine synthase, a glutathione S-transferase and a quinone oxidoreductase, might be involved in detoxification of reactive oxygen species, suggesting the occurrence of an oxidative burst during the incompatible interaction. Finally, host cell-wall modifications leading to parasite-confinement were correlated with more intense callose depositions in the resistant genotype, concomitant with over-expression of the callose synthase cDNA HaGSL1. [source]

    Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens

    THE PLANT JOURNAL, Issue 4 2006
    Zuyu Zheng
    Summary Plant WRKY transcription factors are key regulatory components of plant responses to microbial infection. In addition to regulating the expression of defense-related genes, WRKY transcription factors have also been shown to regulate cross-talk between jasmonate- and salicylate-regulated disease response pathways. The two pathways mediate resistance against different types of microbial pathogens, and there are numerous reports of antagonistic interactions between them. Here we show that mutations of the Arabidopsis WRKY33 gene encoding a WRKY transcription factor cause enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola concomitant with reduced expression of the jasmonate-regulated plant defensin PDF1.2 gene. Ectopic over-expression of WRKY33, on the other hand, increases resistance to the two necrotrophic fungal pathogens. The wrky33 mutants do not show altered responses to a virulent strain of the bacterial pathogen Pseudomonas syringae, although the ectopic expression of WRKY33 results in enhanced susceptibility to this pathogen. The susceptibility of WRKY33 -over-expressing plants to P. syringae is associated with reduced expression of the salicylate-regulated PR-1 gene. The WRKY33 transcript is induced in response to pathogen infection, or treatment with salicylate or the paraquat herbicide that generates activated oxygen species in exposed cells. WRKY33 is localized to the nucleus of plant cells and recognizes DNA molecules containing the TTGACC W-box sequence. Together, these results indicate that pathogen-induced WRKY33 is an important transcription factor that regulates the antagonistic relationship between defense pathways mediating responses to P. syringae and necrotrophic pathogens. [source]

    Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis

    THE PLANT JOURNAL, Issue 5 2004
    Laurent Zimmerli
    Summary Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. [source]

    The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection

    THE PLANT JOURNAL, Issue 4 2004
    Paola Veronese
    Summary Three Botrytis -susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways. [source]