JAK-STAT Pathway (jak-stat + pathway)

Distribution by Scientific Domains


Selected Abstracts


The recent breakthroughs in the understanding of host genomics in hepatitis C

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2010
Andri Rauch
Eur J Clin Invest 2010; 40 (10): 950,959 Abstract Background, Hepatitis C Virus (HCV) infection is spontaneously resolved in about 30% of acutely infected individuals. In those who progress to chronic hepatitis C, HCV therapy permanently eradicates infection in about 40% of cases. It has long been suspected that host genetic factors are key determinants for the control of HCV infection. Design, We will review in this study four genome-wide association studies (GWAS) and two large candidate gene studies that assessed the role of host genetic variation for the natural and treatment-induced control of HCV infection. Results, The studies consistently identified genetic variation in interleukin 28B (IL28B) as the strongest predictor for the control of HCV infection. Importantly, single nucleotide polymorphisms (SNPs) in IL28B strongly predicted both spontaneous and treatment-induced HCV recovery. IL28B is located on chromosome 19 and encodes interferon-,, a type III interferon with antiviral activity, which is mediated through the JAK-STAT pathway by inducing interferon-stimulated genes. The SNPs identified in the GWAS are in high linkage disequilibrium with coding or functional non-coding SNPs that might modulate function and/or expression of IL28B. The role of the different IL28B alleles on gene expression and cytokine function has not yet been established. Conclusions, These findings provide strong genetic evidence for the influence of interferon-, for both the natural and treatment-induced control of HCV infection, and support the further investigation of interferon-, for the treatment of chronic hepatitis C. Furthermore, genetic testing before HCV therapy could provide important information towards an individualized HCV treatment. [source]


BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain

GLIA, Issue 1 2007
Hedong Li
Abstract The earliest radial glia are neural stem cells that guide neural cell migration away from ventricular zones. Subsequently, radial glia become lineage restricted during development before they differentiate into more mature cell types in the CNS. We have previously shown that subpopulations of radial glial cells express markers for glial and neuronal restricted precursors (GRPs and NRPs) in expression patterns that are temporally and spatially regulated during CNS development. To characterize further the mechanism of this regulation in rat forebrain, we tested whether secreted factors that are present during development effect lineage restriction of radial glia. We show here that in radial glial cultures LIF/CNTF up-regulates, whereas BMP2 down-regulates GRP antigens recognized by monoclonal antibodies A2B5/4D4. These activities combined with secretion of BMPs dorsally and LIF/CNTF from the choroid plexus provide an explanation for the graded distribution pattern of A2B5/4D4 in dorso-lateral ventricular regions in vivo. The regulation by LIF/CNTF of A2B5/4D4 is mediated through the JAK-STAT pathway. BMP2 promotes expression on radial glial cells of the NRP marker polysialic acid most likely by regulating N-CAM expression itself, as well as at least one polysialyl transferase responsible for synthesis of polysialic acid on N-CAM. Taken together, these results suggest that generation of lineage-restricted precursors is coordinately regulated by gradients of the secreted factors BMPs and LIF/CNTF during development of dorsal forebrain. © 2006 Wiley-Liss, Inc. [source]


Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2010
Sumio Akifusa
Abstract Adiponectin is a protein hormone produced by differentiating adipocytes and has been proposed to have anti-diabetic and immunosuppressive properties. We previously reported that the globular form of adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO), followed by caspase-dependent apoptotic cell death in RAW 264 cells. Here, we demonstrate that gAd-induced ROS generation and apoptosis were diminished by suppressor of cytokine signaling 3 (SOCS3). The phosphorylation level of signal transducer and activator of transcription (STAT) 3 detected by Western blotting was highest at 20,min in gAd-treated RAW 264 cells. This phosphorylation was inhibited by AG490, a specific inhibitor of janus-activator kinase (JAK). The gAd-induced ROS and NO were reduced by administration of AG490 and Jak-2-specific siRNA in RAW 264 cells. The gAd stimulation transiently induced SOCS3 mRNA expression and protein production. We examined SOCS3-overexpressing RAW 264 cells to investigate the role of the JAK-STAT pathway in gAd-induced ROS and NO generation. SOCS3 overexpression significantly reduced both ROS and NO generation. Additionally, gAd-induced caspase activation and apoptotic cell death were reduced in SOCS3 transfectants compared with vector control transfectants. These results suggest that the JAK-STAT pathway, which can be suppressed by SOCS3 expression, is involved in gAd-induced ROS and NO generation followed by apoptotic cell death. J. Cell. Biochem. 111: 597,606, 2010. © 2010 Wiley-Liss, Inc. [source]