Angular Position (angular + position)

Distribution by Scientific Domains


Selected Abstracts


The New Method for Introduction of an Allyl Group into the Angular Position of 2-(TBS-Oxymethyl)-2,3,4,6,7,8-hexahydro-1-benzopyran-5-one and Its Application to Chiral Wieland,Miescher Type Compound Synthesis.

CHEMINFORM, Issue 32 2005
Kou Hiroya
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Autonomous power system for island or grid-connected wind turbines in distributed generation

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 7 2008
Grzegorz Iwanski
Abstract Modern power generation systems for wind turbines are often based on the rotor fed slip-ring machines. Power electronics converter provides the slip power, and also the reactive power for excitation of the generator during standalone operation. This way the isolated load can be supplied even if the grid has failed. Stator voltage in an autonomous operation is controlled using vectorial phase locked loop (PLL) structure; therefore the information about mechanical speed or angular position of the rotor is eliminated from the control method. The second PLL is also used for synchronization of the generated voltage with the grid voltage. Voltages synchronization is necessary for soft connection and protection of the supplied load from the rapid change of the supply voltage phase. The grid-connected doubly fed induction generator (DFIG) can be useful after grid fault; however, the mains outage detection methods are necessary for fast disconnection after grid failures. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Cold pressing of copper single crystals for a large-area doubly focusing monochromator

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2004
D. F. R. Mildner
The design for a large-area doubly focusing neutron monochromator consists of a large number of small square copper single crystals mounted onto thin aluminium blades that both buckle and rotate independently. This avoids the need for large individual alignment mechanisms for each crystal that introduce unacceptably high levels of background. However, it does require that the crystals be oriented such that the diffracting crystallographic planes are parallel to the crystal face. Cold pressing broadens the natural narrow mosaic of the virgin crystal discs to increase the diffracted intensity. This introduces anisotropy into the crystal that determines its orientation in the final monochromator. The alignment procedure used for each crystal before cutting out the square tile in the correct orientation is described. A few crystals are characterized in detail by neutron diffraction at various stages of the operation, revealing the variation in the mosaic width and the angular position of the reciprocal-lattice vector as a function of the azimuthal angle by rotating the crystal about the normal to its face. The twofold symmetry of the mosaic width of the pressed crystal is modulated by the 2, periodicity introduced by the precession of the reciprocal-lattice vector around the crystal face normal. Satisfactorily aligned crystals have a variation in the angular position for diffraction within the allowed tolerance. [source]


Correctness of a particular solution of inverse problem in rocking curve imaging

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2009
Isabella Huber
Abstract Local lattice misorientations on crystalline substrates can be visualized by rocking curve imaging. Local deviations from Bragg peak positions are extracted from a series of digital topographs recorded by a CCD detector under different azimuths. Bragg peaks from surface regions such as crystallites with a larger local misorientation overlap on the detector, which requires a back-projection method in order to reconstruct the misorientation components on the sample surface from the measured angular position on the detector planes. From mathematical point of view, the reconstruction problem is an inverse problem. In this paper, we formulate the forward and back-projection problems and we prove the correctness of a particular solution. The usability of the method is demonstrated on a phantom data set. [source]


Body size and joint posture in primates

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009
John D. Polk
Abstract Body mass has been shown in experimental and comparative morphological studies to have a significant effect on joint posture in major limb joints. The generalizability of experimental studies is limited by their use of small sample sizes and limited size ranges. In contrast, while comparative morphological studies often have increased sample sizes, the connection between joint posture and morphological variables is often indirect. The current study infers joint postures for a large sample of primates using an experimentally validated method, and tests whether larger primates use more extended joint postures than smaller species. Postures are inferred through the analysis of patterns of subchondral bone apparent density on the medial femoral condyle. Femora from 94 adult wild-shot individuals of 28 species were included. Apparent density measurements were obtained from CT scans using AMIRA software, and the angular position of the anterior-most extent of the region of maximum apparent density on the medial femoral condyle was recorded. In general, the hypothesis that larger-bodied primates use more extended knee posture was supported, but it should be noted that considerable variation exists, particularly at small body sizes. This indicates that smaller species are less constrained by their body size, and their patterns of apparent density are consistent with a wide range of knee postures. The size-related increase in inferred joint posture was observed in most major groups of primates, and this observation attests to the generalizability of Biewener's model that relates body size and joint posture. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source]


A PASSIVITY PLUS FLATNESS CONTROLLER FOR THE PERMANENT MAGNET STEPPER MOTOR

ASIAN JOURNAL OF CONTROL, Issue 1 2000
Hebertt Sira-Ramírez
ABSTRACT A passivity based controller, in suitable combination with the flatness property of the system, is proposed for the effective feedback equilibrium to equilibrium regulation, via planned trajectory tracking, of the angular position in a permanent magnet (PM) stepper motor. The control scheme is shown to be easily modifiable as to include traditional proportional-integral-derivative (PID) feedback control actions which efficiently account for unmodeled load torque perturbations. [source]


Three-dimensional refractive index reconstruction with quantitative phase tomography

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2008
N.M. Dragomir
Abstract Optical tomography based on quantitative phase microscopy is used to determine nondestructively and with high spatial resolution the three-dimensional (3D) refractive index distributions within optical fiber devices. After obtaining a series of phase images of the fiber as it is rotated around its longitudinal axis at regularly-spaced angular positions, filtered backprojection is used to reconstruct a 3D map of the refractive index. The 3D refractive index distribution of the join region between two fusion spliced optical fibers is reconstructed with accuracy better than 10,3. Microsc. Res. Tech., 2008. © 2007 Wiley-Liss, Inc. [source]