Angiotensin II Receptor Antagonist (angiotensin + ii_receptor_antagonist)

Distribution by Scientific Domains


Selected Abstracts


Clinical and Experimental Aspects of Olmesartan Medoxomil, a New Angiotensin II Receptor Antagonist

CARDIOVASCULAR THERAPEUTICS, Issue 4 2004
Kazunori Yoshida
ABSTRACT Olmesartan medoxomil is a new orally active angiotensin II (Ang II) type 1 receptor antagonist. It is a prodrug and is rapidly de-esterified during absorption to form olmesartan, the active metabolite. Olmesartan is a potent, competitive and selective Ang II type 1 receptor antagonist. Olmesartan is not metabolized by the cytochrome P-450 and has a dual route of elimination, by kidneys and liver. In patients with essential hypertension olmesartan medoxomil administered once daily at doses of 10,80 mg dose-dependently reduced diastolic blood pressure (DBP). Troughto-peak ratios for both DBP and systolic blood pressure (SBP) were above 50%. At the recommended once-daily starting doses, olmesartan medoxomil (20 mg) was more effective than losartan (50 mg), valsartan (80 mg) or irbesartan (150 mg) in reducing cuff DBP in patients with essential hypertension. The results of cuff SBP and mean 24-h DBP and SBP were similar to those of cuff DBP measurement. In mild-to-moderate hypertensive patients the recommended starting dose of olmesartan medoxomil was as effective as that of amlodipine besylate (5 mg/day) in reducing both cuff and 24-h blood pressure. In lowering DBP olmesartan medoxomil, at 10,20 mg/day, was as effective as atenolol at 50,100 mg/day. In mild-to-moderate hypertensive patients, olmesartan medoxomil, at 5,20 mg once daily, was more effective than captopril at 12.5,50 mg twice daily. At 20,40 mg once daily olmesartan medoxomil was as effective as felodipine, at 5,10 mg once daily. Olmesartan medoxomil has minimal adverse effects with no clinically important drug interactions. Animal studies have shown that olmesartan medoxomil provides a wide range of organ protection. Olmesartan medoxomil ameliorated atherosclerosis in hyperlipidemic animals and ameliorated cardiac remodeling and improved survival in rats with myocardial infarction. Olmesartan medoxomil has renoprotective effects in a remnant kidney model and type 2 diabetes models. Future investigation should reveal whether these beneficial effects of olmesartan medoxomil are applicable to human diseases. [source]


Progress in the Understanding of Drug,Receptor Interactions, Part,2: Experimental and Theoretical Electrostatic Moments and Interaction Energies of an Angiotensin II Receptor Antagonist (C30H30N6O3S)

CHEMISTRY - A EUROPEAN JOURNAL, Issue 24 2007
Raffaella Soave Dr.
Abstract A combined experimental and theoretical charge density study of an angiotensin II receptor antagonist (1) is presented focusing on electrostatic properties such as atomic charges, molecular electric moments up to the fourth rank and energies of the intermolecular interactions, to gain an insight into the physical nature of the drug,receptor interaction. Electrostatic properties were derived from both the experimental electron density (multipole refinement of X-ray data collected at T=17,K) and the ab initio wavefunction (single molecule and fully periodic calculations at the DFT level). The relevance of S,,,O and S,,,N intramolecular interactions on the activity of 1 is highlighted by using both the crystal and gas-phase geometries and their electrostatic nature is documented by means of QTAIM atomic charges. The derived electrostatic properties are consistent with a nearly spherical electron density distribution, characterised by an intermingling of electropositive and -negative zones rather than by a unique electrophilic region opposed to a nucleophilic area. This makes the first molecular moment scarcely significant and ill-determined, whereas the second moment is large, significant and highly reliable. A comparison between experimental and theoretical components of the third electric moment shows a few discrepancies, whereas the agreement for the fourth electric moment is excellent. The most favourable intermolecular bond is show to be an NH,,,N hydrogen bond with an energy of about 50,kJ,mol,1. Key pharmacophoric features responsible for attractive electrostatic interactions include CH,,,X hydrogen bonds. It is shown that methyl and methylene groups, known to be essential for the biological activity of the drug, provide a significant energetic contribution to the total binding energy. Dispersive interactions are important at the thiophene and at both the phenyl fragments. The experimental estimates of the electrostatic contribution to the intermolecular interaction energies of six molecular pairs, obtained by a new model proposed by Spackman, predict the correct relative electrostatic energies with no exceptions. [source]


Bradykinin and Angiotensin II-Induced [Ca2+]i Rise in Cultured Rat Pituitary Folliculo-Stellate Cells

JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2001
T. Sudo
Abstract Folliculo-stellate cells of the anterior pituitary are thought to modulate pituitary hormone secretion through a paracrine mechanism. Angiotensin II and pituitary adenylate cyclase-activating polypeptide (PACAP) have previously been shown to increase the intracellular Ca2+ concentration ([Ca2+]i) of these cells. In the present study, we examined the effects of various peptides such as bradykinin, angiotensin II, endothelin-1, PACAP, galanin and neurotensin by Ca2+ -imaging of folliculo-stellate cells in primary culture. Bradykinin and angiotensin II increased [Ca2+]i in folliculo-stellate cells. Both responses were completely suppressed by thapsigargin and were significantly suppressed by the phospholipase C inhibitor, U-73122. Ryanodine did not significantly modify the responses. A B2 antagonist and angiotensin II receptor antagonist inhibited the response induced by bradykinin and angiotensin II, respectively. Endothelin-1 and PACAP increased [Ca2+]i in fewer than 50% of folliculo-stellate cells but galanin and neurotensin did not influence [Ca2+]i in any of the folliculo-stellate cells tested. These results indicate that bradykinin and angiotensin II increase [Ca2+]i in folliculo-stellate cells by activating phospholipase C through B2 receptor and AT1 receptor, respectively, and that endothelin-1 and PACAP also increase [Ca2+]i in some folliculo-stellate cells. [source]


Losartan and Ozagrel Reverse Retinal Arteriolar Constriction in Non-Obese Diabetic Mice

MICROCIRCULATION, Issue 5 2008
Seungjun Lee
ABSTRACT Objective: Reductions in retinal blood flow are observed early in diabetes. Venules may influence arteriolar constriction and flow; therefore, we hypothesized that diabetes would induce the constriction of arterioles that are in close proximity to venules, with the constriction mediated by thromboxane and angiotensin II. Methods: Using nonobese diabetic (NOD) mice, retinal measurements were performed three weeks following the age at which glucose levels exceeded 200 mg/dL, with accompanying experiments on age-matched normoglycemic NOD mice. The measurements included retinal arteriolar diameters and red blood cell velocities and were repeated following an injection of the thromboxane synthase inhibitor, ozagrel. Mice were subdivided into equal groups and given drinking water with or without the angiotensin II receptor antagonist, losartan. Results: Retinal arterioles were constricted in hyperglycemic mice, with a significant reduction in flow. However, not all arterioles were equally affected; the vasoconstriction was limited to arterioles that were in closer proximity to venules. The arteriolar vasoconstriction (mean arteriolar diameters = 51 ± 1 vs. 61 ± 1 , m in controls; p < 0.01) was eliminated by both ozagrel (61 ± 2 , m) and losartan (63 ± 2 , m). Conclusions: Venule-dependent arteriolar vasoconstriction in NOD mice is mediated by thromboxane and/or angiotensin II. [source]


Progress in the Understanding of Drug,Receptor Interactions, Part,2: Experimental and Theoretical Electrostatic Moments and Interaction Energies of an Angiotensin II Receptor Antagonist (C30H30N6O3S)

CHEMISTRY - A EUROPEAN JOURNAL, Issue 24 2007
Raffaella Soave Dr.
Abstract A combined experimental and theoretical charge density study of an angiotensin II receptor antagonist (1) is presented focusing on electrostatic properties such as atomic charges, molecular electric moments up to the fourth rank and energies of the intermolecular interactions, to gain an insight into the physical nature of the drug,receptor interaction. Electrostatic properties were derived from both the experimental electron density (multipole refinement of X-ray data collected at T=17,K) and the ab initio wavefunction (single molecule and fully periodic calculations at the DFT level). The relevance of S,,,O and S,,,N intramolecular interactions on the activity of 1 is highlighted by using both the crystal and gas-phase geometries and their electrostatic nature is documented by means of QTAIM atomic charges. The derived electrostatic properties are consistent with a nearly spherical electron density distribution, characterised by an intermingling of electropositive and -negative zones rather than by a unique electrophilic region opposed to a nucleophilic area. This makes the first molecular moment scarcely significant and ill-determined, whereas the second moment is large, significant and highly reliable. A comparison between experimental and theoretical components of the third electric moment shows a few discrepancies, whereas the agreement for the fourth electric moment is excellent. The most favourable intermolecular bond is show to be an NH,,,N hydrogen bond with an energy of about 50,kJ,mol,1. Key pharmacophoric features responsible for attractive electrostatic interactions include CH,,,X hydrogen bonds. It is shown that methyl and methylene groups, known to be essential for the biological activity of the drug, provide a significant energetic contribution to the total binding energy. Dispersive interactions are important at the thiophene and at both the phenyl fragments. The experimental estimates of the electrostatic contribution to the intermolecular interaction energies of six molecular pairs, obtained by a new model proposed by Spackman, predict the correct relative electrostatic energies with no exceptions. [source]


What is the impact of PRIME on real-life diabetic nephropathy?

INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 3 2004
L. M. Ruilope
Summary Type 2 diabetes is increasing globally and is a major cause of conditions such as cardiovascular disease, retinopathy and nephropathy. The Diabetes Control and Complications Trial and the UK Prospective Diabetes Study demonstrated that the progression of renal disease could be slowed by tight glycaemic control and treating any associated hypertension with angiotensin-converting enzyme inhibition. Recent clinical trials have supported the use of angiotensin II receptor antagonists in the treatment of diabetic nephropathy, resulting in the approval of new therapeutic indications in the United States and Europe. The objective of this review is to demonstrate how results from the Program for Irbesartan Mortality and morbidity Evaluation studies apply to clinical practice, and to show how the benefits of irbesartan therapy can be realised at any stage of renal disease in patients with diabetes. [source]


Anaesthesia and angiotensin II receptor antagonists

ANAESTHESIA, Issue 10 2000
J. M. S. Macdonald
[source]