Home About us Contact | |||
Angiosperms
Terms modified by Angiosperms Selected AbstractsNONSTOCHASTIC VARIATION OF SPECIES-LEVEL DIVERSIFICATION RATES WITHIN ANGIOSPERMSEVOLUTION, Issue 3 2003Hallie J. Sims Abstract Variations in the origination and extinction rates of species over geological time often are linked with a range of factors, including the evolution of key innovations, changes in ecosystem structure, and environmental factors such as shifts in climate and physical geography. Before hypothesizing causality of a single factor, it is critical to demonstrate that the observed variation in diversification is significantly greater than one would expect due to natural stochasticity in the evolutionary branching process. Here, we use a likelihood-ratio test to compare taxonomic rate heterogeneity to a neutral birth-death model, using data on well-supported sister pairs of taxa and their species richness. We test the likelihood that the distribution of extant species among angiosperm genera and families could be the result of constant diversification rates. Results strongly support the conclusion that there is significantly more heterogeneity in diversity at the species level within angiosperms than would be expected due to stochastic processes. This result is consistent in datasets of genus pairs and family pairs and is not affected significantly by degrading pairs to simulate inaccuracy in the assumption of simultaneous origin of sister taxa. When we parse taxon pairs among higher groups of angiosperms, results indicate that a constant rates model is not rejected by rosid and basal eudicot pairs but is rejected by asterid and eumagnoliid pairs. These results provide strong support for the hypothesis that species-level rates of origination and/or extinction have varied nonrandomly within angiosperms and that the magnitude of heterogeneity varies among major groups within angiosperms. [source] An Undercover Angiosperm from the Jurassic of ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2010ZHENG Shaolin Abstract: Searching for early angiosperms is a riveting activity in botany because it helps to resolve the phylogenetic relationships among seed plants and among angiosperms themselves. One of the challenges for this job is what the target fossils look like. Most possibly early angiosperms may elude our scrutiny with gymnospermous appearances. This possibility becomes a reality in a Jurassic plant, Solaranthus gen. nov, which bears a peltaspermalean appearance and enclosed ovules. According to knowledge available hitherto, the latter feature makes it an angiosperm. However, such a feature is more likely to be eclipsed by its gymnospermous appearance. The early age and unexpected character assemblage of Solaranthus urge for a fresh look on the assumed-simple relationship between angiosperms and gymnosperms. Its resemblance to the order Peltaspermales favors the Mostly Male Theory. [source] Out of the Palaeotropics?JOURNAL OF BIOGEOGRAPHY, Issue 4 2009Historical biogeography, diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae Abstract Aim, The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. Location, Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods, We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results, The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa,Australia, Africa,India and southern South America,Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. Transitions to conifers probably occurred no earlier than 65 Ma. Main conclusions, The Inocybaceae initially diversified no later than the Cretaceous in Palaeotropical settings, in association with angiosperms. Diversification within major clades of the family accelerated during the Palaeogene in north and south temperate regions, whereas several relictual lineages persisted in the tropics. Both vicariance and dispersal patterns are detected. Species from Neotropical and south temperate regions are largely derived from immigrant ancestors from north temperate or Palaeotropical regions. Transitions to conifer hosts occurred later, probably during the Palaeogene. [source] An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrestedTHE PLANT JOURNAL, Issue 2 2003Geneviève Frick Summary A key reaction in the biosynthesis of chlorophylls (Chls) a and b from cyanobacteria through higher plants is the strictly light-dependent reduction of protochlorophyllide (Pchlide) a to chlorophyllide (Chlide) a. Angiosperms, unlike other photosynthetic organisms, rely exclusively upon this mechanism to reduce Pchlide and hence require light to green. In Arabidopsis, light-dependent Pchlide reduction is mediated by three structurally related but differentially regulated NADPH:Pchlide oxidoreductases, denoted as PORA, PORB, and PORC. The PORA and PORB genes, but not PORC, are strongly expressed early in seedling development. In contrast, expression of PORB and PORC, but not PORA, is observed in older seedlings and adult plants. We have tested the hypothesis that PORB and PORC govern light-dependent Chl biosynthesis throughout most of the plant development by identifying porB and porC mutants of Arabidopsis, the first higher plant por mutants characterized. The porB-1 and porC-1 mutants lack the respective POR transcripts and specific POR isoforms because of the interruption of the corresponding genes by a derivative of the maize Dissociation (Ds) transposable element. Single por mutants, grown photoperiodically, display no obvious phenotypes at the whole plant or chloroplast ultrastructural levels, although the porB-1 mutant has less extensive etioplast inner membranes. However, a light-grown porB-1 porC-1 double mutant develops a seedling-lethal xantha phenotype at the cotyledon stage, contains only small amounts of Chl a, and possesses chloroplasts with mostly unstacked thylakoid membranes. PORB and PORC thus seem to play redundant roles in maintaining light-dependent Chl biosynthesis in green plants, and are together essential for growth and development. [source] The S -methylmethionine cycle in angiosperms: ubiquity, antiquity and activityTHE PLANT JOURNAL, Issue 5 2001Philippe Ranocha Summary Angiosperms synthesize S- methylmethionine (SMM) from methionine (Met) and S- adenosylmethionine (AdoMet) in a unique reaction catalyzed by Met S- methyltransferase (MMT). SMM serves as methyl donor for Met synthesis from homocysteine, catalyzed by homocysteine S- methyltransferase (HMT). MMT and HMT together have been proposed to constitute a futile SMM cycle that stops the free Met pool from being depleted by an overshoot in AdoMet synthesis. Arabidopsis and maize have one MMT gene, and at least three HMT genes that belong to two anciently diverged classes and encode enzymes with distinct properties and expression patterns. SMM, and presumably its cycle, must therefore have originated before dicot and monocot lineages separated. Arabidopsis leaves, roots and developing seeds all express MMT and HMTs, and can metabolize [35S]Met to [35S]SMM and vice versa. The SMM cycle therefore operates throughout the plant. This appears to be a general feature of angiosperms, as digital gene expression profiles show that MMT and HMT are co-expressed in leaves, roots and reproductive tissues of maize and other species. An in silico model of the SMM cycle in mature Arabidopsis leaves was developed from radiotracer kinetic measurements and pool size data. This model indicates that the SMM cycle consumes half the AdoMet produced, and suggests that the cycle serves to stop accumulation of AdoMet, rather than to prevent depletion of free Met. Because plants lack the negative feedback loops that regulate AdoMet pool size in other eukaryotes, the SMM cycle may be the main mechanism whereby plants achieve short-term control of AdoMet level. [source] Significance of a new field oviposition record for Graphium eurypylus (L.) (Lepidoptera: Papilionidae) on Michelia champaca (Magnoliaceae)AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 1 2008Michelle L Larsen Abstract, Phytochemical similarities among ancient Angiosperms presumably played a role in the ecological and evolutionary diversification of the swallowtail butterflies (Papilionidae). Host family feeding specialisation is typical of most Papilionidae species, but field records of oviposition are rare for most swallowtail butterflies. It is even more uncommon to witness oviposition and larval feeding on new host plant species, especially in plant families not previously reported for the butterfly species. Oviposition by a female on a new host, or even on a toxic plant, may represent ancestral behaviour (with a loss of larval acceptance, detoxification or processing abilities) or novel behaviour (providing genetic variation for a potential expansion of host range, or host shift). We document the oviposition, larval use and pupation of the Annonaceae specialised and geographically widespread Graphium eurypylus on a Magnoliaceae species, all under field conditions in Queensland, Australia. This is the first time such field observations of oviposition and larval feeding on Michelia champaca (Magnoliaceae) have been documented anywhere for this species. [source] Papilio aegeus Donovan (Lepidoptera: Papilionidae) host plant range evaluated experimentally on ancient angiospermsAUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 1 2007J Mark Scriber Abstract, Chemical similarities among ancient Angiosperms presumably played a role in the ecological and evolutionary diversification of the swallowtail butterflies (Papilionidae). The abilities of neonate larvae of the Citrus swallowtail, Papilio (=Princeps) aegeus (from Queensland, Australia), to eat, survive and grow on leaves (a choice of young and old) of 34 plant species from families of ancient Angiosperms; 8 Rutaceae, 3 Magnoliaceae, 13 Lauraceae, 3 Monimiaceae, 1 Aristolochiaceae, 2 Apiaceae, 1 Sapotaceae, 1 Winteraceae and 2 Annonaceae were tested. It was apparent that there is genetic variation in populations of Rutaceae-specialised Australian P. aegeus for acceptance, consumption and larval growth, reflecting differential suitability of some native Australian Lauraceae species as food plants (as well as certain Winteraceae, Monimiaceae and non-Australian Magnoliaceae, Lauraceae and Annonaceae). No consumption or survival of P. aegeus was seen on Aristolochia elegans (Aristolochiaceae) or Pouteria australis (Sapotaceae) despite literature records alluding to this possibility. The Rutaceae specialist P. aegeus appears to have the fundamental detoxification capabilities for processing many existing species of the basal Angiosperm families, without having direct ancestors that historically had fed on them. [source] Xylem heterochrony: an unappreciated key to angiosperm origin and diversificationsBOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009SHERWIN CARLQUIST fls All angiosperms can be arranged along a spectrum from a preponderance of juvenile traits (cambial activity lost) to one of nearly all adult characters (cambium maximally active, mature patterns realized rapidly early in ontogeny). Angiosperms are unique among seed plants in the width of this spectrum. Xylem patterns are considered here to be indicative of contemporary function, not relictual. Nevertheless, most families of early-divergent angiosperms exhibit paedomorphic xylem structure, a circumstance that is most plausibly explained by the concept that early angiosperms had sympodial growth forms featuring limited accumulation of secondary xylem. Sympodial habits have been retained in various ways not only in early-divergent angiosperms, but also among eudicots in Ranunculales. The early angiosperm vessel, relatively marginal in conductive abilities, was improved in various ways, with concurrent redesign of parenchyma and fibre systems to enhance conductive, storage and mechanical capabilities. Flexibility in degree of cambial activity and kinds of juvenile/adult expressions has been basic to diversification in eudicots as a whole. Sympodial growth that lacks cambium, such as in monocots, provides advantages by various features, such as organographic compartmentalization of tracheid and vessel types. Woody monopodial eudicots were able to diversify as a result of production of new solutions to embolism prevention and conductive efficiency, particularly in vessel design, but also in parenchyma histology. Criteria for paedomorphosis in wood include slow decrease in length of fusiform cambial initials, predominance of procumbent ray cells and lesser degrees of cambial activity. Retention of ancestral features in primary xylem (the ,refugium' effect) is, in effect, a sort of inverse evidence of acceleration of adult patterns in later formed xylem. Xylem heterochrony is analysed not only for all key groups of angiosperms (including monocots), but also for different growth forms, such as lianas, annuals, various types of perennials, rosette trees and stem succulents. Xylary phenomena that potentially could be confused with heterochrony are discussed. Heterochronous xylem features seem at least as important as other often cited factors (pollination biology) because various degrees of paedomorphic xylem are found in so many growth forms that relate in xylary terms to ecological sites. Xylem heterochrony can probably be accessed during evolution by relatively simple gene changes in a wide range of angiosperms and thus represents a current as well as a past source of variation upon which diversification was based. Results discussed here are compatible with both current molecular-based phylogenetic analyses and all recent physiological work on conduction in xylem and thus represent an integration of these fields. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161, 26,65. [source] Morphology and anatomy of anomalous short shoots in Pinus (Pinaceae) and their evolutionary meaningFEDDES REPERTORIUM, Issue 3-4 2010Veit Martin Dörken Dr. Abstract Recent Pinus -species are evergreen and have a typical long shoot/short shoot differentiation. For angiosperms we could show that this type of shoot differentiation is linked to deciduousness (Dörken & Stützel 2009). Evergreen angiosperms with prominent shoot differentiation are derived from deciduous ancestors. The primitive evergreen condition is however characterized by the absence of a shoot differentiation. Here it is therefore analysed if the shoot differentiation in Pinus could be regarded as a reminder of a deciduous ancestry. In such a context Pinus monophylla would be functionally closest to a primitive evergreen angiosperm and represent a nearly perfect secondary adaptation to the needs of an evergreen species. Morphology and anatomy of aberrant short shoots in Pinus -species have been analysed to test this hypothesis. We suppose that the ancestor of Pinus had several needle leaves inserted spirally on a well developed short shoot axis ending in a terminal bud, as it can be found in Larix today (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Global trends in senesced-leaf nitrogen and phosphorusGLOBAL ECOLOGY, Issue 5 2009Zhiyou Yuan ABSTRACT Aim, Senesced-leaf litter plays an important role in the functioning of terrestrial ecosystems. While green-leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced-leaf nutrients are not well understood. Location, Global. Methods, Here, bringing together a global dataset of senesced-leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world-wide trends in senesced-leaf N and P and their stoichiometric ratios. Results, Concentration of senesced-leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced-leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life-form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced-leaf N, P, N : P, C : N and C : P with a ranking of senesced-leaf N from high to low: forbs , shrubs , trees > grasses, while the ranking of P was forbs , shrubs , trees < grasses. The climatic trends of senesced-leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions, Globally, senesced-leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem. [source] Phylogeography of the world's tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugiaJOURNAL OF BIOGEOGRAPHY, Issue 1 2010Paul G. Nevill Abstract Aim, There is a need for more Southern Hemisphere phylogeography studies, particularly in Australia, where, unlike much of Europe and North America, ice sheet cover was not extensive during the Last Glacial Maximum (LGM). This study examines the phylogeography of the south-east Australian montane tree species Eucalyptus regnans. The work aimed to identify any major evolutionary divergences or disjunctions across the species' range and to examine genetic signatures of past range contraction and expansion events. Location, South-eastern mainland Australia and the large island of Tasmania. Methods, We determined the chloroplast DNA haplotypes of 410 E. regnans individuals (41 locations) based on five chloroplast microsatellites. Genetic structure was examined using analysis of molecular variance (AMOVA), and a statistical parsimony tree was constructed showing the number of nucleotide differences between haplotypes. Geographic structure in population genetic diversity was examined with the calculation of diversity parameters for the mainland and Tasmania, and for 10 regions. Regional analysis was conducted to test hypotheses that some areas within the species' current distribution were refugia during the LGM and that other areas have been recolonized by E. regnans since the LGM. Results, Among the 410 E. regnans individuals analysed, 31 haplotypes were identified. The statistical parsimony tree shows that haplotypes divided into two distinct groups corresponding to mainland Australia and Tasmania. The distribution of haplotypes across the range of E. regnans shows strong geographic patterns, with many populations and even certain regions in which a particular haplotype is fixed. Many locations had unique haplotypes, particularly those in East Gippsland in south-eastern mainland Australia, north-eastern Tasmania and south-eastern Tasmania. Higher haplotype diversity was found in putative refugia, and lower haplotype diversity in areas likely to have been recolonized since the LGM. Main conclusions, The data are consistent with the long-term persistence of E. regnans in many regions and the recent recolonization of other regions, such as the Central Highlands of south-eastern mainland Australia. This suggests that, in spite of the narrow ecological tolerances of the species and the harsh environmental conditions during the LGM, E. regnans was able to persist locally or contracted to many near-coastal refugia, maintaining a diverse genetic structure. [source] HIGHER PLANT BIOMARKERS IN PALEOGENE CRUDE OILS FROM THE YUFUTSU OIL-AND GASFIELD AND OFFSHORE WILDCATS, JAPANJOURNAL OF PETROLEUM GEOLOGY, Issue 4 2006S. Yessalina Geochemical investigation of Paleogene oils from the onshore Yufutsu oil- and gasfield, southern Hokkaido, and from two nearby offshore wells, revealed the presence of numerous biomarkers of higher plant origin. Biomarkers in the oils belong to different groups of both angiosperm and gymnosperm origin; they include bicyclic sesquiterpanes, diterpanes, and triterpanes and their aromatized counterparts, which suggests a terrestrial origin for the oils. The oils were characterized as having a high wax content, a low content of organosulphur compounds, a high pristane/phytane ratio, and a low C27/(C27+C29) sterane ratio. Although the oils from on- and offshore Southern Hokkaido are similar in their geochemical composition, notable differences were observed in the biomarker signature of both saturate and aromatic fractions. The oils from the offshore wells appeared to have a greater abundance of higher plant biomarkers compared to those from the Yufutsu field, suggesting an enrichment in higher plant components. Differences in biomarker fingerprint could not be linked to the maturity effect, since the oils appeared to be of similar maturity levels, corresponding to the late stage of the oil window (0.9,1.2%, Rc). The differences in the biomarker signatures between the oils from the Yufutsu field and the offshore wells are likely to be due to facies variations in source organic matter, resulting from differences in the quantity and quality of land plant input. [source] Schmeissneria: An angiosperm from the Early JurassicJOURNAL OF SYSTEMATICS EVOLUTION, Issue 5 2010Xin WANG Abstract, The origin of angiosperms has been a focus of intensive research for a long time. The so-called pre-Cretaceous angiosperms, including Schmeissneria, are usually clouded with doubt. To expel the cloud around the enigmatic Schmeissneria, the syntype and new materials of Schmeissneria collected previously in Germany and recently in China are studied. These materials include female inflorescences and infructescences. The latter are old materials but were under-studied previously. Light microscopy and scanning electron microscope observations indicate that the fruits in these infructescences have in situ seeds enclosed, and that the ovaries are closed before pollination. Thus the plants meet two strict criteria for angiosperms: angiospermy plus angio-ovuly. Placing Schmeissneria in angiosperms will extend the record of angiosperms up to the Early Jurassic, more compatible with many molecular dating conclusions on the age of angiosperms, and demanding a reassessment of the current doctrines on the origin of angiosperms. Although the phylogenetic relationship of Schmeissneria to other angiosperms apparently is still an open question, this study adds to research concerning the origin of angiosperms. [source] Molecular evolution and phylogeny of the angiosperm ycf2 geneJOURNAL OF SYSTEMATICS EVOLUTION, Issue 4 2010Jin-Ling HUANG Abstract, Much of the recent progress in understanding angiosperm phylogeny has been achieved using multigene or plastid genome datasets. However, it is largely unclear what size of dataset is required to achieve sufficient resolution. The ycf2 gene is the largest plastid gene in angiosperms and it was used as part of multigene datasets in several earlier investigations into angiosperm relationships. In this study, we show that the ycf2 gene alone can provide a generally well-supported phylogeny that is consistent with those inferred from the most comprehensive multigene or plastid genome datasets. The phylogenetic signal of the ycf2 gene is likely derived from the combination of its long sequence length and low rate of nucleotide substitution. The ycf2 gene may provide a low-cost alternative to comprehensive multigene or genome datasets for investigating angiosperm relationships. [source] Isolation and characterization of microsatellite markers for the seagrass Cymodocea nodosaMOLECULAR ECOLOGY RESOURCES, Issue 3 2003F. Alberto Abstract In order to study the spatial patterns of genetic diversity of a clonal marine angiosperm, the seagrass Cymodocea nodosa, microsatellite markers were obtained by screening a genomic library enriched for the (CT) dinucleotide motif. Of 38 primer pairs defined, 15 amplified polymorphic microsatellites and are described. These loci identified a number of alleles ranging from two to seven, and showed expected heterozygosity ranging from 0.35 to 0.76, when a group of 40 individuals from Cadiz Bay in Spain was analysed. Additionally, we describe here the multiplexing conditions for 12 of these loci. [source] INTRAMARGINAL VEINED LAURACEAE LEAVES FROM THE ALBIAN,CENOMANIAN OF CHARENTE-MARITIME (WESTERN FRANCE)PALAEONTOLOGY, Issue 2 2009CLÉMENT COIFFARD Abstract:,Eucalyptolaurus depreii gen. et sp. nov. is proposed for angiosperm leaves newly collected from uppermost Albian , lowermost Cenomanian of Charente-Maritime (western France). They consist of simple, narrow, elongate laminas with entire margins and intramarginal veins. The epidermal cells of adaxial cuticle shows small, rounded, blunt papillae outward that protrude inward and fuse together as rolls along and parallel to the margins, while the adaxial cuticle bears brachyparacytic stomatal apparatus that exhibit sunken guard cells and hair bases consisting of a thick-walled pore surrounded by radially arranged differentiated cells. Resin bodies occur inside the mesophyll. These characters closely resemble the lauroid taxa ,Myrtophyllum' and Pandemophyllum from the Cenomanian of the Czech Republic and Dakota (USA) respectively. The narrow angle of basilaminar secondaries and the whole suite of features in the guard cells (sunken guard cells embedded into subsidiary cells and stomatal ledges) strongly support close affinity with the Lauraceae. From the Cenomanian lauraceous reproductive organs and their related leaves already showed high disparity and diversity. In addition they displayed a broad ecological range from freshwater floodplains to brackish swamps. This combined to high diversity of reproductive organs suggest ecological radiation of Lauraceae by the Cenomanian. [source] CO2 -concentrating mechanisms in Egeria densa, a submersed aquatic plantPHYSIOLOGIA PLANTARUM, Issue 4 2002María V. Lara Egeria densa is an aquatic higher plant which has developed different mechanisms to deal with photosynthesis under conditions of low CO2 availability. On the one hand it shows leaf pH-polarity, which has been proposed to be used for bicarbonate utilization. In this way, at high light intensities and low dissolved carbon concentration, this species generates a low pH at the adaxial leaf surface. This acidification shifts the equilibrium HCO3,/CO2 towards CO2, which enters the cell by passive diffusion. By this means, E. densa increases the concentration of CO2 available for photosynthesis inside the cells, when this gas is limiting. On the other hand, under stress conditions resulting from high temperature and high light intensities, it shows a biochemical adaptation with the induction of a C4 -like mechanism but without Kranz anatomy. Transfer from low to high temperature and light conditions induces increased levels of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 1.1.1.40), both key enzymes participating in the Hatch-Slack cycle in plants with C4 metabolism. Moreover, one PEPC isoform, whose synthesis is induced by high temperature and light, is phosphorylated in the light, and changes in kinetic and regulatory properties are correlated with changes in the phosphorylation state of this enzyme. In the present review, we describe these two processes in this submersed angiosperm that appear to help it perform photosynthesis under conditions of extreme temperatures and high light intensities. [source] Size distribution approaches for monitoring and conservation of coastal Cymodocea habitatsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010S. Orfanidis Abstract 1.Cymodocea nodosa's leaf length distribution was studied as an easily measurable indicator to monitor and conserve Macedonian, North Aegean, Greek coastal habitats. 2.Three Cymodocea meadows off the eastern Kavala Gulf coast (Nea Karvali, Erateino, Agiasma), with that of Nea Karvali close to an industrial area being the most degraded, were sampled during the seagrass main growing season in July 2004. Two further meadows, one pristine to less degraded (Brasidas, Gulf of Kavala) and one degraded (Biamyl, Inner Thessaloniki Gulf), were sampled as benchmarks in July 2005. The results were evaluated using Gaussian fit curves, and non-parametric and nested parametric ANOVA on a hierarchy of spatial scales: area (tens of metres), site (hundreds of metres) and meadow (kilometres). 3.Frequency (%) distribution of leaf length values and CymoSkew index variation were best associated with anthropogenic stress. Frequency (%) distribution of adult and intermediate photosynthetic leaf length values revealed a unimodal distribution possible to be fitted, at least at pristine to less degraded meadows, by normal distribution (R2>0.5). 4.Statistically significant variation was estimated for CymoSkew index, a quantitative expression of leaf length asymmetry, on the meadow scale (P<0.001). Biamyl (3.82) and Nea Karvali (3.64) were indicated as heavily degraded meadows, Erateino (2.93) as a degraded meadow, Agiasma (2.18) as a meadow with the first signs of degradation, and Brasidas (1.68) as a pristine to less degraded meadow. These results in combination with other meadow specific biotic parameters were used to suggest a preliminary angiosperm ,Ecological Status Classes' classification scheme useful for the implementation of WFD in the north Aegean Sea. 5.The CymoSkew index seems to respond to lower levels of stress than is needed for other more conservative plant modules and therefore, could be regarded as an early warning indicator of Cymodocea habitat degradation. Copyright © 2009 John Wiley & Sons, Ltd. [source] How many nuclei make an embryo sac in flowering plants?BIOESSAYS, Issue 11 2006Paula J. Rudall Research on early-divergent angiosperms, including Amborella, the putative sister to all other extant angiosperms, is increasingly used as a yardstick to infer the nature of the hypothetical ancestral angiosperm. Some traits are relatively diverse (and hence relatively labile) in this phylogenetic grade, compared with the more derived eudicot clade, in which developmental patterns have become increasingly canalized. One of the many mysteries surrounding the origin of the angiosperms is the evolutionary origin of the Polygonum -type embryo sac (monosporic, eight-nucleate and seven-celled) that occurs in the majority of flowering plants. Observations on the megagametophyte of Amborella are conflicting, but a recent report of a supernumerary synergid in this genus raises the question of whether the Polygonum -type embryo sac is derived by duplication of a four-nucleate structure or by reduction from a multicellular structure. BioEssays 28: 1067,1071, 2006. © 2006 Wiley Periodicals, Inc. [source] An Undercover Angiosperm from the Jurassic of ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2010ZHENG Shaolin Abstract: Searching for early angiosperms is a riveting activity in botany because it helps to resolve the phylogenetic relationships among seed plants and among angiosperms themselves. One of the challenges for this job is what the target fossils look like. Most possibly early angiosperms may elude our scrutiny with gymnospermous appearances. This possibility becomes a reality in a Jurassic plant, Solaranthus gen. nov, which bears a peltaspermalean appearance and enclosed ovules. According to knowledge available hitherto, the latter feature makes it an angiosperm. However, such a feature is more likely to be eclipsed by its gymnospermous appearance. The early age and unexpected character assemblage of Solaranthus urge for a fresh look on the assumed-simple relationship between angiosperms and gymnosperms. Its resemblance to the order Peltaspermales favors the Mostly Male Theory. [source] Xingxueanthus: An Enigmatic Jurassic Seed Plant and Its Implications for the Origin of AngiospermyACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010Xin WANG Abstract: The origin of angiosperms has been tantalizing botanists for centuries. Despite the efforts of palaeobotanists, most of the pre-Cretaceous angiosperms are regarded either non-convincing or misdated. The applications of SEM and LM (light microscope) enable us to recognize a coalified fossil plant, Xingxueanthus sinensis gen. et sp. nov., from the Haifanggou Formation (Middle Jurassic, >160 Ma) in western Liaoning, China. Xingxueanthus is an "inflorescence" with more than 20 female units spirally arranged. Each female unit is situated in the axil of a bract. The female unit is composed of an ovule-container and a style-like projection at the top. There is a vertical column bearing several ovules in the ovule-container. The general morphology and the internal structure of Xingxueanthus distinguish itself from any known fossil and extant gymnosperms, and its structures are more comparable to those of angiosperms. Xingxueanthus, if taken as a gymnosperm, would represent a new class, demonstrate an evolutionarily advanced status of ovule-protection in gymnosperms never seen before, and provide new insights into the origin of angiospermy. Alternatively, if taken as an angiosperm, together with Schmeissneria, it would increase the diversity of Jurassic angiosperms, which has been underestimated for a long time, and suggest a much earlier origin of angiospermy than currently accepted. [source] A New Symmetrodont Mammal with Fur Impressions from the Mesozoic of ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2003Guillermo W. ROUGIER Abstract, Western Liaoning of northeastern China is world-renowned for the Mesozoic Jehol biota, especially for yielding many feathered dinosaurs, primitive birds, mammals and fossil angiosperm. This paper describes a complete specimen of a symmetrodont mammal with well-preserved hairs and soft tissue from the basal part of the Yixian Formation in the Sihetun area, Beipiao, western Liaoning. It is significant for understanding the morphology, osteology, phylogeny and life habits of Mesozoic symmetrodont mammals. [source] Conifers as invasive aliens: a global survey and predictive frameworkDIVERSITY AND DISTRIBUTIONS, Issue 5-6 2004David M. Richardson ABSTRACT We summarize information on naturalized and invasive conifers (class Pinopsida) worldwide (data from 40 countries, some with remote states/territories), and contrast these findings with patterns for other gymnosperms (classes Cycadopsida, Gnetopsida and Ginkgoopsida) and for woody angiosperms. Eighty conifer taxa (79 species and one hybrid; 13% of species) are known to be naturalized, and 36 species (6%) are ,invasive'. This categorization is based on objective and conservative criteria relating to consistency of reproduction, distance of spread from founders, and degree of reliance on propagules from the founder population for persistence in areas well outside the natural range of species. Twenty-eight of the known invasive conifers belong to one family (Pinaceae) and 21 of these are in one genus (Pinus). The Cupressaceae (including Taxodiaceae) has six known invasive species (4%) in four genera, but the other four conifer families have none. There are also no known invasive species in classes Cycadopsida, Gnetopsida or Ginkgoopsida. No angiosperm family comprising predominantly trees and shrubs has proportionally as many invasive species as the Pinaceae. Besides the marked taxonomic bias in favour of Pinaceae, and Pinus in particular, invasiveness in conifers is associated with a syndrome of life-history traits: small seed mass (< 50 mg), short juvenile period (< 10 year), and short intervals between large seed crops. Cryptomeria japonica, Larix decidua, Picea sitchensis, Pinus contorta, Pinus strobus, and Pseudotsuga menziesii exemplify this syndrome. Many rare and endangered conifer species exhibit opposite characters. These results are consistent with earlier predictions made using a discriminant function derived from attributes of invasive and noninvasive Pinus species. Informative exceptions are species with small seeds (< 4 mg, e.g. Chamaecyparis spp., Pinus banksiana, Tsuga spp. , mostly limited to wet/mineral substrates) or otherwise ,non-invasive' characters (e.g. large seeds, fleshy fruits, e.g. Araucaria araucana, Pinus pinea, Taxus baccata that are dependent on vertebrates for seed dispersal). Most conifers do not require coevolved mutualists for pollination and seed dispersal. Also, many species can persist in small populations but have the genetic and reproductive capacity to colonize and increase population size rapidly. The underlying mechanisms mediating conifer invasions are thus easier to discern than is the case for most angiosperms. Further information is needed to determine the extent to which propagule pressure (widespread dissemination, abundant plantings, long history of cultivation) can compensate for low ,inherent invasiveness'. [source] Track analysis and conservation priorities in the cloud forests of Hidalgo, MexicoDIVERSITY AND DISTRIBUTIONS, Issue 3 2000Isolda Luna Vega Abstract .,A track analysis based on the distributional patterns of 967 species of vascular plant taxa (gymnosperms, angiosperms and pteridophytes) was performed to assess conservation priorities for cloud forests in the state of Hidalgo, Mexico, ranged in the municipalities of Chapulhuacán, Eloxochitlán, Molocotlán, Pisaflores, Tenango de Doria, Tlahuelompa and Tlanchinol, as well as five floristically equivalent areas in the states of Veracruz (Teocelo and Helechales), Tamaulipas (Gómez Farías), Morelos-México (Ocuilan) and Oaxaca (Huautla de Jiménez). In order to detect generalized tracks we employed a new parsimony method, where clades (considered equivalent to generalized tracks) are defined forbidding homoplasy and acting like a compatibility algorithm. Several generalized tracks were found connecting these areas. Cloud forests of Chapulhuacán were connected according to three different generalized tracks and thus have a higher value, qualifying as a priority area for the conservation of cloud forests in the state of Hidalgo. [source] The evolution of floral scent and insect chemical communicationECOLOGY LETTERS, Issue 5 2010Florian P. Schiestl Ecology Letters (2010) 13: 643,656 Abstract Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common ,floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. ,Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of ,floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of ,floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction. [source] Appraising the roles of nutrient availability, global change, and functional traits during the angiosperm rise to dominanceECOLOGY LETTERS, Issue 5 2010Kevin E. Mueller Ecology Letters (2010) 13: E1,E6 Abstract To explain the rise of angiosperms during the Cretaceous, Berendse & Scheffer (Ecol. Lett., 12, 2009, 865) invoke feedbacks between leaf litter, soil nutrients, and growth, overlooking other factors affecting resource acquisition by Cretaceous plants. We evaluate their hypothesis, highlight alternative explanations, and emphasize use of a broader framework for understanding the angiosperm radiation. [source] The angiosperm radiation revisited, an ecological explanation for Darwin's ,abominable mystery'ECOLOGY LETTERS, Issue 9 2009Frank Berendse Abstract One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models. [source] Nonnutrient anthropogenic chemicals in seagrass ecosystems: Fate and effectsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2009Michael A. Lewis Abstract Impacts of human-related chemicals, either alone or in combination with other stressors, are important to understand to prevent and reverse continuing worldwide seagrass declines. This review summarizes reported concentrations of anthropogenic chemicals in grass bed,associated surface waters, sediments, and plant tissues and phytotoxic concentrations. Fate information in seagrass-rooted sediments and overlying water is most available for trace metals. Toxicity results in aqueous exposures are available for at least 13 species and a variety of trace metals, pesticides, and petrochemicals. In contrast, results for chemical mixtures and chemicals in sediment matrices are uncommon. Contaminant bioaccumulation information is available for at least 23 species. The effects of plant age, tissue type, and time of collection have been commonly reported but not biological significance of the chemical residues. Experimental conditions have varied considerably in seagrass contaminant research and interspecific differences in chemical residues and chemical tolerances are common, which limits generalizations and extrapolations among species and chemicals. The few reported risk assessments have been usually local and limited to a few single chemicals and species representative of the south Australian and Mediterranean floras. Media-specific information describing exposure concentrations, toxic effect levels, and critical body burdens of common near-shore contaminants is needed for most species to support integrated risk assessments at multiple geographical scales and to evaluate the ability of numerical effects-based criteria to protect these marine angiosperms at risk. [source] NONSTOCHASTIC VARIATION OF SPECIES-LEVEL DIVERSIFICATION RATES WITHIN ANGIOSPERMSEVOLUTION, Issue 3 2003Hallie J. Sims Abstract Variations in the origination and extinction rates of species over geological time often are linked with a range of factors, including the evolution of key innovations, changes in ecosystem structure, and environmental factors such as shifts in climate and physical geography. Before hypothesizing causality of a single factor, it is critical to demonstrate that the observed variation in diversification is significantly greater than one would expect due to natural stochasticity in the evolutionary branching process. Here, we use a likelihood-ratio test to compare taxonomic rate heterogeneity to a neutral birth-death model, using data on well-supported sister pairs of taxa and their species richness. We test the likelihood that the distribution of extant species among angiosperm genera and families could be the result of constant diversification rates. Results strongly support the conclusion that there is significantly more heterogeneity in diversity at the species level within angiosperms than would be expected due to stochastic processes. This result is consistent in datasets of genus pairs and family pairs and is not affected significantly by degrading pairs to simulate inaccuracy in the assumption of simultaneous origin of sister taxa. When we parse taxon pairs among higher groups of angiosperms, results indicate that a constant rates model is not rejected by rosid and basal eudicot pairs but is rejected by asterid and eumagnoliid pairs. These results provide strong support for the hypothesis that species-level rates of origination and/or extinction have varied nonrandomly within angiosperms and that the magnitude of heterogeneity varies among major groups within angiosperms. [source] MODULARITY OF THE ANGIOSPERM FEMALE GAMETOPHYTE AND ITS BEARING ON THE EARLY EVOLUTION OF ENDOSPERM IN FLOWERING PLANTSEVOLUTION, Issue 2 2003William E. Friedman Abstract The monosporic seven-celled/eight-nucleate Polygonumtype female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonumtype female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of onto-genetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar- like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio. [source] |