Ito Differential (ito + differential)

Distribution by Scientific Domains


Selected Abstracts


Optimal filtering for incompletely measured polynomial states over linear observations

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 5 2008
Michael Basin
Abstract In this paper, the optimal filtering problem for polynomial system states over linear observations with an arbitrary, not necessarily invertible, observation matrix is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. As a result, the Ito differentials for the optimal estimate and error variance corresponding to the stated filtering problem are first derived. A transformation of the observation equation is introduced to reduce the original problem to the previously solved one with an invertible observation matrix. The procedure for obtaining a closed system of the filtering equations for any polynomial state over linear observations is then established, which yields the explicit closed form of the filtering equations in the particular case of a third-order state equation. In the example, performance of the designed optimal filter is verified against a conventional extended Kalman,Bucy filter. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Optimal filtering for polynomial system states with polynomial multiplicative noise

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 6 2006
Michael Basin
Abstract In this paper, the optimal filtering problem for polynomial system states with polynomial multiplicative noise over linear observations is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. As a result, the Ito differentials for the optimal estimate and error variance corresponding to the stated filtering problem are first derived. The procedure for obtaining a closed system of the filtering equations for any polynomial state with polynomial multiplicative noise over linear observations is then established, which yields the explicit closed form of the filtering equations in the particular cases of a linear state equation with linear multiplicative noise and a bilinear state equation with bilinear multiplicative noise. In the example, performance of the designed optimal filter is verified for a quadratic state with a quadratic multiplicative noise over linear observations against the optimal filter for a quadratic state with a state-independent noise and a conventional extended Kalman,Bucy filter. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Optimal filtering for incompletely measured polynomial states over linear observations

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 5 2008
Michael Basin
Abstract In this paper, the optimal filtering problem for polynomial system states over linear observations with an arbitrary, not necessarily invertible, observation matrix is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. As a result, the Ito differentials for the optimal estimate and error variance corresponding to the stated filtering problem are first derived. A transformation of the observation equation is introduced to reduce the original problem to the previously solved one with an invertible observation matrix. The procedure for obtaining a closed system of the filtering equations for any polynomial state over linear observations is then established, which yields the explicit closed form of the filtering equations in the particular case of a third-order state equation. In the example, performance of the designed optimal filter is verified against a conventional extended Kalman,Bucy filter. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Optimal filtering for polynomial system states with polynomial multiplicative noise

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 6 2006
Michael Basin
Abstract In this paper, the optimal filtering problem for polynomial system states with polynomial multiplicative noise over linear observations is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. As a result, the Ito differentials for the optimal estimate and error variance corresponding to the stated filtering problem are first derived. The procedure for obtaining a closed system of the filtering equations for any polynomial state with polynomial multiplicative noise over linear observations is then established, which yields the explicit closed form of the filtering equations in the particular cases of a linear state equation with linear multiplicative noise and a bilinear state equation with bilinear multiplicative noise. In the example, performance of the designed optimal filter is verified for a quadratic state with a quadratic multiplicative noise over linear observations against the optimal filter for a quadratic state with a state-independent noise and a conventional extended Kalman,Bucy filter. Copyright © 2006 John Wiley & Sons, Ltd. [source]