Ist Ein (ist + ein)

Distribution by Scientific Domains


Selected Abstracts


The effect of a fibrin glue on the integration of Bio-Oss® with bone tissue

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 5 2002
An experimental study in labrador dogs
Abstract Background: Bio-Oss® is a deproteinized bovine mineral used in bone augmentation procedures. The particles are often mixed with a protein product (Tisseel®) to form a mouldable graft material. Aim: The aim of the present experiment was to study the healing of self-contained bone defects after the placement of Bio-Oss® particles alone or mixed with Tisseel® in cylindrical defects in the edentulous mandibular ridge of dogs. Material and methods: In 4 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were extracted bilaterally. 3 months later, 3 cylindrical bone defects, 4 mm in diameter and 8 mm in depth, were produced in the right side of the mandible. Following a crestal incision, full thickness flaps were raised and the bone defects were prepared with a trephine drill. The defects were filled with Bio-Oss® (Geistlich Biomaterials, Wolhuser, Switzerland) particles alone or mixed with Tisseel® (Immuno AG, Vienna, Austria), or left "untreated". A collagen membrane (Bio-Gide®, Geistlich Biomaterials, Wolhuser, Switzerland) was placed to cover all defects and the flaps were sutured. 2 months later, the defect preparation and grafting procedures were repeated in the left side of the mandible. After another month, the animals were sacrificed and biopsies obtained from the defect sites. Results: Bio-Oss® -treated defects revealed a higher percentage of contact between graft particles and bone tissue than defects treated with Bio-Oss®+ Tisseel® (15% and 30% at 1 and 3 months versus 0.4% and 8%, respectively). Further, the volume of connective tissue in the Bio-Oss® treated defects decreased from the 1 to the 3 month interval (from 44% to 30%). This soft tissue was replaced with newly formed bone. In the Bio-Oss®+ Tisseel® treated defects, however, the proportion of connective tissue remained unchanged between 1 and 3 months. Conclusion: The adjunct of Tisseel® may jeopardize the integration of Bio-Oss® particles with bone tissue. Zusammenfassung Hintergrund: Bio-Oss® ist ein entproteiniertes Mineral vom Schwein, was bei knöchernen Augmentationen verwendet wird. Die Partikel werden oft mit einem Proteinprodukt gemischt, um ein formbares Implantationsmaterial zu erhalten. Ziel: Das Ziel des vorliegenden Experimentes war das Studium der Heilung von selbst-erhaltenden Knochendefekten nach der Anwendung von Bio-Oss® Partikeln allein oder vermischt mit Tisseel® in zylindrischen Defekten im zahnlosen unteren Kieferkamm von Hunden. Materal und Methoden: Bei 4 Labradorhunden wurden die 2., 3. und 4. unteren Prämolaren beidseitig extrahiert. 3 Monate später wurden 3 zylindrische Knochendefekte, 4 mm im Durchmesser und 8 mm tief, auf der rechten Seite des Unterkiefers hergestellt. Nach einer krestalen Incision wurde ein voller Mukoperiostlappen mobilisiert und die knöchernen Defekte mit einem Trepanfräser präpariert. Die Defekte wurden mit Bio-Oss® Partikeln (Geistlich Biomaterial, Wolhuser, Schweiz) allen oder gemischt mit Tisseel® (Immuno AG, Wien, Österreich) gefüllt oder blieben "unbehandelt". Eine Kollagenmembran (Bio-Gide®, Geistlich Biomaterial, Wolhuser, Schweiz) wurde zur Abdeckung über alle Defekte gelegt und die Lappen reponiert und vernäht. 2 Monate später wurden die Defektpräparationen und die Implantationsmaßnahmen auf der linken Seite des Unterkiefers widerholt. Nach einem weiteren Monat wurden die Tiere getötet und Biopsien von den Defektseiten gewonnen. Ergebnisse: Mit Bio-Oss® behandelte Defekte zeigten einen höheren Prozentsatz von Kontakt zwischen Implantationsmaterial und Knochengewebe als die Defekte, die mit Bio-Oss® und Tisseel® behandelt worden waren (15% und 30% zum 1. Monat und 3. Monat versus 0.4% und 8%). Weiterhin verringerte sich das Volumen des Bindegewebes in den mit Bio-Oss® behandelten Defekten vom 1. zum 3. Monat (von 44% zu 30%). Dieses Weichgewebe wurde mit neu gebildetem Knochen ersetzt. In dem mit Bio-Oss® und Tisseel® behandelten Defekten blieb die Verteilung des Bindegewebes zwischen dem 1. und 3. Monat unverändert. Zusammenfassung: Die Zugabe von Tisseel® kann die Integration von Bio-Oss® Partikeln mit Knochengewebe behindern. Résumé Origine: Le Bio-Oss® est un minéral bovin déprotéine utilisé pour les épaississements osseux. Les particules sont souvent mélangées avec un produit protéiné (Tisseel®) pour former un matérial de greffe malléable. But. Le but de l'étude présente a été d'étudier la guérison des lésions osseuses après le placement de particules de Bio-Oss® seules ou mélangées au Tisseel® dans des lésions cylindriques au niveau de la mandibule édentée de labradors. Matériaux et méthodes: Chez 4 labradors les 2ièmes, 3ièmes et 4ièmes prémolaires inférieures ont été avulsées bilatéralement. 3 mois après, 3 lésions osseuses et cylindriques de 4 mm de diamètre et de 8 mm de profondeur ont été produites du côté droit de la mandibule. A la suite d'une incision crestale, des lambeaux d'épaisseur complète ont été relevés et les lésions osseuses préparées avec un trépan. Les lésions ont été comblées par des particules de Bio-Oss® seul (Geistlich Biomaterials, Wolhuser, Suisse) ou mélangées au Tisseel® (Immuno AG, Vienne) ou laissées non-traitées. Une membrane collagène (Bio-Gide®, Geistlich Biomaterials, Wolhuser, Suisse) a été placée pour recouvrir toutes les lésions et les lambeaux ont ensuite été suturés. 2 mois après, les processus précités ont été répétés au niveau gauche de la mandibule. 1 mois plus tard, les animaux ont été tués et les biopsies prélevées. Résultats: Les lésions traitées par le Bio-Oss® ont révélé un % plus important de contact entre les particules du greffon et le tissu osseux que les lésions traitées avec le Bio-Oss®+Tisseel® (respectivement 15% à 30% à 1 et 3 mois versus 0.4% et 8%). De plus le volume de tissu conjonctif dans les lésions traitées par Bio-Oss® diminuait du mois 1 au mois 3, de 44 à 30%. Ce tissu mou a été remplacé par un os néoformé. Dans les lésions traitées par Bio-Oss®+Tisseel®, la proportion de tissu conjonctif demeurait inchangée entre les mois 1 et 3. Conclusions: L'addition de Tisseel® peut mettre en péril l'intégration des particules de Bio-Oss® au tissu osseux. [source]


Soil- and plant-based nitrogen-fertilizer recommendations in arable farming

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005
Hans-Werner Olfs
Abstract Under- as well as overfertilization with nitrogen (N) will result in economic loss for the farmer due to reduced yields and quality of the products. Also from an ecological perspective, it is important that the grower makes the correct decision on how much and when to apply N for a certain crop to minimize impacts on the environment. To aggravate the situation, N is a substance that is present in many compartments in different forms (nitrate, ammonium, organic N, etc.) in the soil-plant environment and takes part in various processes (e.g., mineralization, immobilization, leaching, denitrification, etc.). Today, many N-recommendation systems are mainly based on yield expectation. However, yields are not stable from year to year for a given field. Also the processes that determine the N supply from other sources than fertilizer are not predictable at the start of the growing season. Different methodological approaches are reviewed that have been introduced to improve N-fertilizer recommendations for arable crops. Many soil-based methods have been developed to measure soil mineral N (SMN) that is available for plants at a given sampling date. Soil sampling at the start of the growing period and analyzing for the amount of NO -N (and NH -N) is a widespread approach in Europe and North America. Based on data from field calibrations, the SMN pool is filled up with fertilizer N to a recommended amount. Depending on pre-crop, use of organic manure, or soil characteristics, the recommendation might be modified (±10,50,kg N ha,1). Another set of soil methods has been established to estimate the amount of N that is mineralized from soil organic matter, plant residues, and/or organic manure. From the huge range of methods proposed so far, simple mild extraction procedures have gained most interest, but introduction into practical recommendation schemes has been rather limited. Plant-analytical procedures cover the whole range from quantitative laboratory analysis to semiquantitative "quick" tests carried out in the field. The main idea is that the plant itself is the best indicator for the N supply from any source within the growth period. In-field methods like the nitrate plant sap/petiole test and chlorophyll measurements with hand-held devices or via remote sensing are regarded as most promising, because with these methods an adequate adjustment of the N-fertilizer application strategy within the season is feasible. Prerequisite is a fertilization strategy that is based on several N applications and not on a one-go approach. Boden- und Pflanzenanalyse zur Stickstoff-Düngebedarfsprognose in Ackerkulturen Unter- und Überdüngung mit N führen zu deutlichen ökonomischen Verlusten für Landwirte, da sowohl der Ertrag als auch die Qualität der Erzeugnisse vermindert werden. Auch aus ökologischer Sicht ist die richtige Entscheidung des Anbauers über Höhe und Zeitpunkt der N-Düngung von Bedeutung, um die Auswirkungen auf die Umwelt so gering wie möglich zu halten. Erschwerend kommt hinzu, dass N in sehr vielen Umweltkompartimenten in verschiedenen Bindungsformen (Nitrat, Ammonium, organisch gebundener N) vorkommt und dass N in verschiedenste Umsetzungsprozesse involviert ist (Mineralisation, Immobilisation, Auswaschung, Denitrifikation). Auch heutzutage orientieren sich viele Systeme, die zur N-Düngebedarfsprognose eingesetzt werden, im Wesentlichen an der Ertragserwartung. Dabei ist jedoch zu bedenken, dass weder der Ertrag als von Jahr zu Jahr stabil angesehen werden kann, noch dass die Prozesse, die das bodenbürtige N-Angebot bestimmen, zu Beginn der Vegetationsperiode hinreichend gut vorausgesagt werden können. Daher werden im Folgenden verschiedene methodische Ansätze erläutert, die zur Verbesserung der N-Düngebedarfsprognose für Ackerkulturen geeignet erscheinen. Viele Bodenanalyse-Methoden zielen darauf ab, den mineralischen N-Vorrat des Bodens, der an einem bestimmten Beprobungstermin als pflanzenverfügbarer N vorliegt, zu erfassen. Die Bodenprobeentnahme zu Beginn der Vegetationsperiode und die Bestimmung der Menge an Nitrat (und Ammonium) ist ein in Europa und Nord-Amerika weitverbreiteter Ansatz. Anhand der Daten aus Kalibrierversuchen kann dann abgeleitet werden, wie viel Dünger-N zum Auffüllen des N-Vorrats eingesetzt werden soll. In Abhängigkeit von Vorfrucht, Einsatz von Wirtschaftsdüngern oder weiteren Bodeneigenschaften kann diese Empfehlung modifiziert werden (± 10 bis 50,kg N ha,1). Weitere Bodenuntersuchungsmethoden wurden entwickelt, um die Menge des während der Vegetationszeit aus der organischen Bodensubstanz, aus Ernteresten und/oder aus Wirtschaftsdüngern mineralisierten N zu bestimmen. Obwohl aus der Vielzahl der vorgeschlagenen Methoden einfache "milde" Extraktionsverfahren eine gewisse Bedeutung erlangt haben, werden diese in der Praxis bei der Ermittlung des N-Düngebedarfs als zusätzliche Information nur selten berücksichtigt. Verfahren der Pflanzenanalyse umfassen einen weiten Bereich von quantitativen Laboranalysen bis zu halbquantitativen Schnelltests, die direkt auf dem Acker eingesetzt werden können. Die wesentliche Idee beim Einsatz der Pflanzenanalyse ist die Vorstellung, dass die Pflanze an sich der beste Indikator ist, die N-Verfügbarkeit aus den verschiedenen Quellen gewissermaßen kumulativ innerhalb der Wachstumszeit anzuzeigen. Methoden, die auf dem Acker eingesetzt werden können, wie z.,B. der Nitrat-Pflanzensaft- (oder Blattstiel-)Test sowie die Chlorophyll-Messung mit Handgeräten oder berührungslose Messverfahren haben den klaren Vorteil, dass sie eine schnelle Anpassung der N-Düngestrategie während der Vegetation ermöglichen. Voraussetzung dazu ist allerdings, dass die N-Düngestrategie nicht auf einer Einmal-Applikation beruht, sondern dass die N-Düngermenge auf mehrere Teilgaben verteilt wird. [source]


Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt

ANGEWANDTE CHEMIE, Issue 17 2010
Hana Robson, Marsden
Abstract Die biologische Selbstorganisation ist ein sehr komplexer Vorgang und lässt sich im Grunde als Bottom-up-Synthese verstehen, die biomolekulare Bausteine von präzise festgelegter Form, Größe, Hydrophobie und Funktionalisierung zu Funktionsmaterialien zusammenfügt. Im Bereich der supramolekularen Chemie haben Wissenschaftler von den Selbstorganisationsvorgängen in der Natur gelernt, wie sich das Zusammenspiel vieler kleiner Kräfte beherrschen lässt, um zu komplexen selbstorganisierten Nanomaterialien zu gelangen. Das Coiled-Coil-Motiv ist ein in der Natur weit verbreiteter Baustein, der außerdem ein großes Potenzial in der synthetischen Biologie hat. In diesem Aufsatz untersuchen wir die Rolle des Coiled-Coil-Motivs in der natürlichen Selbstorganisation und fassen zusammen, welche Fortschritte bei der Verwendung dieses Motivs in der Synthese von funktionellen Einheiten, Aggregaten und Systemen erzielt wurden. [source]


Chemikalien für die Lederherstellung.

CHEMIE IN UNSERER ZEIT (CHIUZ), Issue 1 2009
Vom Kollagen tierischer Häute zum Werkstoff Leder
Seine einmaligen Werkstoffeigenschaften verdankt Leder dem Aufbau aus dem strukturell und chemisch so ideal vorgebildeten Kollagen. In den einzelnen Technologiestufen der Lederherstellung wird das Kollagen je nach Einsatzgebiet maßgeschneidert modifiziert durch Anwendung einer breiten Palette an Lederchemikalien. Die wichtigsten hier vorzustellen, war Anliegen dieses Beitrags. Leder steht nach wie vor in der Gunst der Verbraucher. Hergestellt aus einem nachwachsenden, an die menschliche Ernährung gekoppelten Rohstoff, brauchen wir keine Lederverknappung zu befürchten. Seine stetige Weiterentwicklung durch neue Lederchemikalien ist zu erwarten. "Leder ist ein alter Werkstoff mit Zukunft"! Leather is a valuable material manufactured from collagen network of hides and skins by suitable chemical and physical processes. The article describes structure and reactivity of the most important leather chemicals, necessary to convert collagen into leather. [source]