Home About us Contact | |||
Isotopic Differences (isotopic + difference)
Selected AbstractsLipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National ParkGEOBIOLOGY, Issue 1 2004Linda L. Jahnke ABSTRACT The molecular and isotopic compositions of lipid biomarkers from cultured filamentous cyanobacteria (Phormidium, also known as Leptolyngbya) have been used to investigate the community and trophic structure of photosynthetic mats from alkaline hot springs of the Lower Geyser Basin at Yellowstone National Park. We studied a shallow-water coniform mat from Octopus Spring (OS) and a submerged, tufted mat from Fountain Paint Pots (FPP) and found that 2-methylhopanepolyols and mid-chain branched methylalkanes were diagnostic for cyanobacteria, whereas abundant wax esters were representative of the green non-sulphur bacterial population. The biomarker composition of cultured Phormidium -isolates varied, but was generally representative of the bulk mat composition. The carbon isotopic fractionation for biomass relative to dissolved inorganic carbon (DIC; ,CO2) for cultures grown with 1% CO2 ranged from 21.4 to 26.1 and was attenuated by diffusion limitation associated with filament aggregation (i.e. cell clumping). Isotopic differences between biomass and lipid biomarkers, and between lipid classes, depended on the cyanobacterial strain, but was positively correlated with overall fractionation. Acetogenic lipids (alkanes and fatty acids) were generally more depleted than isoprenoids (phytol and hopanoids). The ,13CTOC for OS and FPP mats were somewhat heavier than for cultures (,16.9 and ,23.6, respectively), which presumably reflects the lower availability of DIC in the natural environment. The isotopic dispersions among cyanobacterial biomarkers, biomass and DIC reflected those established for culture experiments. The 7-methyl- and 7,11-dimethylheptadecanes were from 9 to 11 depleted relative to the bulk organic carbon, whereas 2-methylhopanols derived from the oxidation-reduction of bacteriohopanepolyol were enriched relative to branched alkanes by approximately 5,7. These isotopic relationships survived with depth and indicated that the relatively heavy isotopic composition of the OS mat resulted from diffusion limitation. This study supports the suggestion that culture studies can establish valid isotopic relationships for interpretation of trophic structure in modern and ancient microbial ecosystems. [source] Measuring natural abundance of 13C in respired CO2: variability and implications for non-invasive dietary analysisFUNCTIONAL ECOLOGY, Issue 6 2001S. E. PERKINS Summary 1,Three experiments were performed, using laboratory mice (Mus musculus) as a model species, to evaluate the potential of using measurements of carbon isotope ratios in expired CO2 for tracing diets. 2,Breath 13C signatures of mice fed a constant diet (,21·4, ± 0·35) reflected their diet, but were depleted by on average ,5·7,. Body mass, sex and age were independent and significant factors correlated with the variability of 13C enrichment in respired CO2. 3,Breath 13C signatures from starved mice (7 h) were lower than unstarved mice by 2·0,. Subsequently when starved mice were fed a small meal of a new diet, breath 13C signatures approached those of the new diets within 15 min, returning to preingestion levels after 105 min. 4,After a permanent diet switch 13C values of breath were not asymptotic within 6 days, possibly because of use of fat reserves during the daytime carrying an isotopic memory of the previous diet. Hence, individual breath 13C signatures may vary according to nutritive state and previous dietary history. 5,Interindividual variability was measured at 3·3,. The implications are that large samples of individuals will be required to distinguish between diets of different populations where the isotopic difference between their diets was small , for example, that expected between herbivorous and carnivorous diets. However, breath would be suitable for distinguishing between dietary intakes of individuals for food types that are isotopically more distinct , such as between C3 and C4 plants. [source] C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soilsGLOBAL CHANGE BIOLOGY, Issue 10 2007JONATHAN G. WYNN Abstract The large difference in the degree of discrimination of stable carbon isotopes between C3 and C4 plants is widely exploited in global change and carbon cycle research, often with the assumption that carbon retains the carbon isotopic signature of its photosynthetic pathway during later stages of decomposition in soil and sediments. We applied long-term incubation experiments and natural 13C-labelling of C3 and C4-derived soil organic carbon (SOC) collected from across major environmental gradients in Australia to elucidate a significant difference in the rate of decomposition of C3- and C4-derived SOC. We find that the active pool of SOC (ASOC) derived from C4 plants decomposes at over twice the rate of the total pool of ASOC. As a result, the proportion of C4 photosynthesis represented in the heterotrophic CO2 flux from soil must be over twice the proportional representation of C4-derived biomass in SOC. This observation has significant implications for much carbon cycle research that exploits the carbon isotopic difference in these two photosynthetic pathways. [source] Oxygen and Hydrogen Isotopes of Waters in the Ordos Basin, China: Implications for Recharge of Groundwater in the North of Cretaceous Groundwater BasinACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009Yuncheng YANG Abstract: Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ,7.8, and ,53.0, for ,18O and ,D, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ,10.6, to ,6.0, with an average of ,8.4, for ,18O and from ,85, to ,46, with an average of ,63, for ,D. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ,11.6, to ,8.8, with an average of ,10.2, for ,18O and from ,89, to ,63, with an average of ,76, for ,D. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater. [source] Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical riversECOLOGY OF FRESHWATER FISH, Issue 3 2007David B. Jepsen Abstract,,, We analysed stable carbon and nitrogen isotopic ratios of dissolved inorganic carbon (DIC), plants, detritus and fishes to estimate the relative importance of dominant production sources supporting food webs of four Venezuelan rivers with divergent geochemical and watershed characteristics. Based on samples taken during the dry season at each site, fishes from two nutrient-poor, blackwater rivers had significantly lower ,13C values (mean = ,31.4, and ,32.9,) than fishes from more productive clearwater and whitewater rivers (mean = ,25.2, and ,25.6, respectively). Low carbon isotopic ratios of fishes from blackwaters were likely influenced by low ,13C of DIC assimilated by aquatic primary producers. Although floodplains of three savanna rivers supported high biomass of C4 grasses, relatively little carbon from this source appeared to be assimilated by fishes. Most fishes in each system assimilated carbon derived mostly from a combination of microalgae and C3 macrophytes, two sources with broadly overlapping carbon isotopic signatures. Even with this broad overlap, several benthivorous grazers from blackwater and whitewater rivers had isotopic values that aligned more closely with algae. We conclude that comparative stable isotopic studies of river biota need to account for watershed geochemistry that influences the isotopic composition of basal production sources. Moreover, isotopic differences between river basins can provide a basis for discriminating spatial and temporal variation in the trophic ecology of fishes that migrate between watersheds having distinct geochemical characteristics. [source] Origin of quartz geodes from Laño and Tubilla del Agua sections (middle,upper Campanian, Basque-Cantabrian Basin, northern Spain): isotopic differences during diagenetic processesGEOLOGICAL JOURNAL, Issue 2 2002Juan J. Gómez-Alday Abstract Quartz geodes and nodular chert have been found within middle,upper Campanian carbonate sediments from the Laño and Tubilla del Agua sections of the Basque-Cantabrian Basin, northern Spain. The morphology of geodes together with the presence of anhydrite laths included in megaquartz crystals and spherulitic fibrous quartz (quartzine-lutecite), suggest an origin from previous anhydrite nodules. The anhydrite nodules at Laño were produced by the percolation of marine brines, during a period corresponding to a sedimentary gap, with ,34S and ,18O mean values of 18.8, and 13.6, respectively, consistent with Upper Cretaceous seawater sulphate values. Higher ,34S and ,18O mean values of 21.2, and 21.8, recorded in the Tubilla del Agua section are interpreted as being due to a partial bacterial sulphate reduction process in a more restricted marine environment. The idea that sulphates may have originated from the leaching of previously deposited Keuper sulphate evaporites with subsequent precipitation as anhydrite, is rejected because the ,34S, ,18O and 87Sr/86Sr values of anhydrite laths observed at both the Tubilla del Agua and Laño sections suggest an origin from younger marine brines. Later calcite replacement and precipitation of geode-filling calcite is recorded in both sections, with ,13C and ,18O values indicating the participation of meteoric waters. Synsedimentary activity of the Peñacerrada diapir, which lies close to the Laño section, played a significant role in the local shallowing of the basin and the formation of quartz geodes. In contrast, eustatic shallowing of the inner marine series of the Tubilla del Agua section led to the generation of morphologically similar quartz geodes. Copyright © 2002 John Wiley & Sons, Ltd. [source] Shoreline tufa and tufaglomerate from Pleistocene Lake Bonneville, Utah, USA: stable isotopic and mineralogical records of lake conditions, processes, and climate,JOURNAL OF QUATERNARY SCIENCE, Issue 1 2005Stephen T. Nelson Abstract Shoreline carbonate deposits of Pleistocene Lake Bonneville record the conditions and processes within the lake, including the evaporative balance as well as vertical and lateral chemical and isotopic gradients. Tufas (swash-zone) and tufaglomerates (cemented, subaqueous colluvium or beachrock) on multiple, well-developed shorelines near the Silver Island Range, Utah, also present an opportunity to examine physicochemical lake processes through time. Three shorelines are represented by carbonate deposits, including the 23,20,ka Stansbury stage, 15,14.5,ka Bonneville stage, and 14.5,14,ka Provo stage. Mean ,18OVSMOW values of all three shorelines are statistically indistinguishable (,,,27,±,1,), when a few Bonneville samples of unusual composition are neglected. However, differences in primary carbonate mineralogy indicate that the correspondence is an artefact of the different fractionation factors between calcite or aragonite and water. Second, in order to sustain a much smaller, shallower lake during the colder Stansbury stage, the climate must have also been relatively dry. Third, ,18O values in tufa are higher than tufaglomerate by ,,,0.5,, consistent with greater evaporative enrichment of lake water in the swash zone. Fourth, mean ,13C values for the Provo, Stansbury and Bonneville shorelines (4.4, 5.0 and 5.2,, respectively) show that carbon species were dominated by atmospheric exchange, with the variations produced by differences in the oxidation of organic matter. Comparisons of shoreline carbonates with deep-lake marls of the same approximate age indicate that shoreline carbonate was much higher in ,13C and ,18O values (both ,,2.5,) during Bonneville time, whereas isotopic differences were minor (both ,,1,) in Stansbury time. In particular, the Bonneville stage may have sustained large vertical or lateral isotopic gradients due to evaporative enrichment effects on ,18O values. In contrast, the lake during the much shallower Stansbury stage may have been well mixed. Differences in the primary mineralogy (Stansbury and Bonneville, aragonite,>,calcite; Provo, calcite,>,aragonite) reflect profound differences in lake chemistry in terms of open versus closed-basin lakes. The establishment of a continuous outlet during Provo time probably reduced the Mg2+/Ca2+ ratio of lake water. Curiously, regardless of primary mineralogy, tufaglomerate cements are enriched in Na+ and Cl, and depleted in Mg2+ relative to capping tufa of the same age. This probably reflects vital or kinetic effects in the swash zone (tufa). We suspect that ,abiotic' effects may have been important in the dark pore space of developing tufaglomerate, where the absence of light suppressed photosynthesis. Copyright © 2005 John Wiley & Sons, Ltd. [source] A comparison of muscle- and scale-derived ,13C and ,15N across three life-history stages of Atlantic salmon, Salmo salarRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2008R. Niloshini Sinnatamby Stable isotope signatures were obtained from paired scale and muscle tissue samples from smolt, post-smolt and one-sea-winter adult Atlantic salmon (Salmo salar). Post-smolt and adult scales were separated into central and outer (marine) portions with analyses carried out on the marine growth section of both life-history stages and the central portion for the adult scales. Muscle and scale ,13C and ,15N signatures were assessed (1) to determine whether a linear relationship exists between tissue types, (2) to determine if a constant offset exists between tissue signatures across all life-history stages, and (3) to evaluate whether underplating imparts a significant bias to life-history scale segments that would preclude their use in retrospective analyses of any ontogenetic dietary changes between life-history stages. Significant correlations were found to exist between muscle and scale stable isotope signatures obtained from smolts (,13C and ,15N) and adults (,15N). Both the muscle and the scale signatures captured the dietary shift associated with the transition from freshwater to the marine environment. Post-smolt and adult scales were depleted relative to muscle tissue, which may be attributed to isotopic differences in amino acid composition between muscle and scale tissues. The results suggest that scales may better represent dietary carbon sources because they are not influenced by lipid dynamics. The scale, however, appears less responsive to short-term shifts in diet relative to muscle and, therefore, must be used only to infer seasonally integrated dietary patterns for slow-growing life-history stages. Copyright © 2008 John Wiley & Sons, Ltd. [source] Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studiesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2003M. Power Laboratory experiments were conducted with Daphnia magna and Hyalella sp. grown on a single food source of known isotopic composition at a range of temperatures spanning the physiological optima for each species. Daphnia raised at 26.5°C were enriched in ,13C and ,15N by 3.1 and 2.8,, respectively, relative to diet. Daphnia raised at 12.8°C were enriched 1.7 and 5.0, in ,13C and ,15N, respectively. Results imply a significant negative relationship between the ,13C and ,15N of primary consumers when a temperature gradient exists. Similar responses were observed for Hyalella. Results indicate a general increase in ,13C enrichment and decrease in ,15N enrichment as temperature rises. Deviations from the commonly applied isotopic enrichment values used in aquatic ecology were attributed to changes in temperature-mediated physiological rates. Field data from a variety of sources also showed a general trend toward ,13C enrichment with increasing temperature in marine and lacustrine zooplankton. Multivariate regression models demonstrated that, in oligotrophic and mesotrophic lakes, zooplankton ,13C was related to lake-specific POM ,13C, lake surface temperature and latitude. Temperature-dependent isotopic separation (enrichment) between predator and prey should be taken into consideration when interpreting the significance of isotopic differences within and among aquatic organisms and ecosystems, and when assigning organisms to food-web positions on the basis of observed isotope values. Copyright © 2003 John Wiley & Sons, Ltd. [source] |