Ischemic Rat Brain (ischemic + rat_brain)

Distribution by Scientific Domains


Selected Abstracts


Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain

GLIA, Issue 16 2008
Li Hong Shen
Abstract The glial scar, a primarily astrocytic structure bordering the infarct tissue inhibits axonal regeneration after stroke. Neurocan, an axonal extension inhibitory molecule, is up-regulated in the scar region after stroke. Bone marrow stromal cells (BMSCs) reduce the thickness of glial scar wall and facilitate axonal remodeling in the ischemic boundary zone. To further clarify the role of BMSCs in axonal regeneration and its underlying mechanism, the current study focused on the effect of BMSCs on neurocan expression in the ischemic brain. Thirty-one adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by an injection of 3 × 106 rat BMSCs (n = 16) or phosphate-buffered saline (n = 15) into the tail vein 24 h later. Animals were sacrificed at 8 days after stroke. Immunostaining analysis showed that reactive astrocytes were the primary source of neurocan, and BMSC-treated animals had significantly lower neurocan and higher growth associated protein 43 expression in the penumbral region compared with control rats, which was confirmed by Western blot analysis of the brain tissue. To further investigate the effects of BMSCs on astrocyte neurocan expression, single reactive astrocytes were collected from the ischemic boundary zone using laser capture microdissection. Neurocan gene expression was significantly down-regulated in rats receiving BMSC transplantation (n = 4/group). Primary cultured astrocytes showed similar alterations; BMSC coculture during reoxygenation abolished the up-regulation of neurocan gene in astrocytes undergoing oxygen-glucose deprivation (n = 3/group). Our data suggest that BMSCs promote axonal regeneration by reducing neurocan expression in peri-infarct astrocytes. © 2008 Wiley-Liss, Inc. [source]


The study of the creatine kinase in rat brain during ischemia by magnetization transfer and biochemical analysis

JOURNAL OF NEUROCHEMISTRY, Issue 2003
D. Dobrota
Various methods are used to study the biochemical changes in the central nervous system under normal and pathological conditions. The magnetization transfer 31P magnetic resonance technique was used here to measure the creatine kinase (CK) reaction rate constant in vivo in rats with cerebral ischemia. The measurements indicated that the rate constant of the CK reaction was significantly reduced in the case of chronic brain ischemia in aged rats. The similar reduction of the creatine kinase activity was found in the ischemic rat brain homogenate measured by biochemical analysis. At the same time, corresponding conventional phosphorus magnetic resonance spectra showed negligible or no change in signal intensities of compounds containing macroergic phosphates. Acknowledgements: This work was supported by the Grant Category C and Comenius University Grant No. X/2003. [source]


Protective role of COMP-Ang1 in ischemic rat brain

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2010
Hye Young Shin
Abstract In cerebral ischemia, the induction of angiogenesis may represent a natural defense mechanism that enables the hypoxic brain to avoid progression into infarction. Angiopoietin-1 (Ang1) is known to produce non-leaky and stable blood vessel formation mainly by the Tie2 receptor. Therefore, we envisioned that the application of cartilage oligomeric matrix protein-Ang1 (COMP-Ang1), a soluble, stable, and potent form of Ang1, would promote angiogenesis and provide a protective effect following unilateral middle cerebral artery occlusion (MCAO) in rats. To this end, we employed a 2-hour-MCAO model, and treated rats with adenovirus encoding COMP-Ang1 (Ade-COMP-Ang1) or control virus encoding ,-gal (Ade-,-gal). Time course magnetic resonance images (MRIs) revealed significantly reduced infarct volume in the rats treated with Ade-COMP-Ang1 with an improvement of post-ischemic neurological deficits compared with rats treated with Ade-,-gal. Moreover, compared to the rats treated with Ade-,-gal, the rats treated with Ade-COMP-Ang1 showed an increase in blood vessels, especially in the border zone adjacent to the infarction, increased number of endogenous neuronal progenitor cells in the ischemic brain, and decreased number of TUNEL-positive cells. Taken together, COMP-Ang1 reduced infarct volume and consequently attenuated post-ischemic neurological deficits through enhanced angiogenesis and increased viable cell mass of neuronal cells. © 2009 Wiley-Liss, Inc. [source]


Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2008
Hye Young Shin
Abstract The present study was designed to examine whether endogenous neurogenesis and neovascularization occur in the neocortex of the ischemic rat brain after unilateral middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were divided into six groups (n = 29): one control group (n = 4) and five groups composed of animals sacrificed at increasing times post-MCAO (2 days and 1, 2, 4, and 8 weeks; n = 5 per group). To determine the presence of neurogenesis and neovascularization in the ischemic brain, nestin, Tuj1, NeuN, GFAP, Tie2, RECA, and 5-bromo-2,-deoxyuridine (BrdU) were analyzed immunohistochemically. In addition, nestin, GFAP, and Tie2 expression was determined by Western blotting. Triple-labeling of nestin, BrdU, and laminin was performed to visualize the interaction between endogenous neurogenesis and neovascularization. The number of BrdU- and nestin-colabeled cells increased markedly in the neocortex and border zone of the ischemic area up to 1 week after MCAO and decreased thereafter. Western blot analysis revealed that the expression of nestin, Tie-2, and GFAP was amplified in the ipsilateral hemisphere 2days after MCAO and peaked 1 week after MCAO, compared with that in the normal brain. After ischemic injury, nestin- and BrdU-colabeled cells were observed in the vicinity of the endothelial cells lining cerebral vessels in the ipsilateral neocortex of the ischemic brain. Endogenous neurogenesis and neovascularization were substantially activated and occurred in close proximity to one other in the ipsilateral neocortex of the ischemic rat brain. © 2007 Wiley-Liss, Inc. [source]