Ischemic Area (ischemic + area)

Distribution by Scientific Domains


Selected Abstracts


Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2004
Lijun Chen
Abstract One of our previous studies indicated that the expression of ,-catenin, which is the key factor of wnt-frizzled pathway, increased significantly in the ischemic area of the rat heart 7 days after myocardial infarction (MI). Together with the results of other recent studies, we made an assumption that wnt-frizzled pathway may be involved in the controlled cell proliferation and migration during repair processes after MI. To verify this assumption we tried to investigate the expression of another signal transduction molecule called Dishevelled in wnt-frizzled pathway during the wound healing process after MI. The left descending coronary arteries of rats were ligated to induce MI. Immunohistochemistry SABC method and in situ hybridization were performed to detect the expression of Dishevelled-1. The results showed, that one day after MI, Dishevelled-1 mRNA but not protein expression was detected in the cells at the border zone of the infarction area; 4 days after MI the expression of Dishevelled-1 increased exclusively and cytoplasmic Dishevelled-1 was observed not only at the border zone but also in the infarct area; 7 days after MI, it seems that the expression reached its peak, the positive staining even spread into the endothelial and smooth muscle cells of the newly formed and pre-existing blood vessels in the infarction area; after that the Dishevelled-1 expression decreased abruptly and could hardly be detected 28 days after MI. Thus cytoplasmic Dishevelled-1 may be involved in the controlled proliferation and migration of myofibroblasts and vascular endothelial cells, hence play a role during the wound healing process after MI. [source]


Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2008
Hye Young Shin
Abstract The present study was designed to examine whether endogenous neurogenesis and neovascularization occur in the neocortex of the ischemic rat brain after unilateral middle cerebral artery occlusion (MCAO). Sprague-Dawley rats were divided into six groups (n = 29): one control group (n = 4) and five groups composed of animals sacrificed at increasing times post-MCAO (2 days and 1, 2, 4, and 8 weeks; n = 5 per group). To determine the presence of neurogenesis and neovascularization in the ischemic brain, nestin, Tuj1, NeuN, GFAP, Tie2, RECA, and 5-bromo-2,-deoxyuridine (BrdU) were analyzed immunohistochemically. In addition, nestin, GFAP, and Tie2 expression was determined by Western blotting. Triple-labeling of nestin, BrdU, and laminin was performed to visualize the interaction between endogenous neurogenesis and neovascularization. The number of BrdU- and nestin-colabeled cells increased markedly in the neocortex and border zone of the ischemic area up to 1 week after MCAO and decreased thereafter. Western blot analysis revealed that the expression of nestin, Tie-2, and GFAP was amplified in the ipsilateral hemisphere 2days after MCAO and peaked 1 week after MCAO, compared with that in the normal brain. After ischemic injury, nestin- and BrdU-colabeled cells were observed in the vicinity of the endothelial cells lining cerebral vessels in the ipsilateral neocortex of the ischemic brain. Endogenous neurogenesis and neovascularization were substantially activated and occurred in close proximity to one other in the ipsilateral neocortex of the ischemic rat brain. © 2007 Wiley-Liss, Inc. [source]


Combining angiogenic gene and stem cell therapies for myocardial infarction

THE JOURNAL OF GENE MEDICINE, Issue 9 2009
Jennifer Pons
Abstract Background Transplantation of stem cells from various sources into infarcted hearts has the potential to promote myocardial regeneration. However, the regenerative capacity is limited partly as a result of the low survival rate of the transplanted cells in the ischemic myocardium. In the present study, we tested the hypothesis that combining cell and angiogenic gene therapies would provide additive therapeutic effects via co-injection of bone marrow-derived mesenchymal stem cells (MSCs) with an adeno-associated viral vector (AAV), MLCVEGF, which expresses vascular endothelial growth factor (VEGF) in a cardiac-specific and hypoxia-inducible manner. Methods MSCs isolated from transgenic mice expressing green fluorescent protein and MLCVEGF packaged in AAV serotype 1 capsid were injected into mouse hearts at the border of ischemic area, immediately after occlusion of the left anterior descending coronary, individually or together. Engrafted cells were detected and quantified by real-time polymerase chain reaction and immunostaining. Angiogenesis and infarct size were analyzed on histological and immunohistochemical stained sections. Cardiac function was analyzed by echocardiography. Results We found that co-injection of AAV1-MLCVEGF with MSCs reduced cell loss. Although injection of MSCs and AAV1-MLCVEGF individually improved cardiac function and reduced infarct size, co-injection of MSC and AAV1-MLCVEGF resulted in the best improvement in cardiac function as well as the smallest infarct among all groups. Moreover, injection of AAV1-MLCVEGF induced neovasculatures. Nonetheless, injection of MSCs attracted endogenous stem cell homing and increased scar thickness. Conclusions Co-injection of MLCVEGF and MSCs in ischemic hearts can result in better cardiac function and MSC survival, compared to their individual injections, as a result of the additive effects of each therapy. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Postischemic treatment of neonatal cerebral ischemia should target autophagy,

ANNALS OF NEUROLOGY, Issue 3 2009
Julien Puyal PhD
Objective To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. Methods Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. Results Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. Interpretation The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia. Ann Neurol 2009 [source]


Excitotoxicity-induced endocytosis confers drug targeting in cerebral ischemia,

ANNALS OF NEUROLOGY, Issue 3 2009
Anne Vaslin MSc
Objective Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. Methods In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. Results In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N -methyl- D -aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. Interpretation Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected. Ann Neurol 2009;65:337,347 [source]


Astrocytes are More Resistant to Focal Cerebral Ischemia Than Neurons and Die by a Delayed Necrosis

BRAIN PATHOLOGY, Issue 4 2009
Günfer Gürer
Abstract Several recent reports proposed that astrocyte death might precede neuronal demise after focal ischemia, contrary to the conventional view that astrocytes are more resistant to injury than neurons. Interestingly, there are findings supporting each of these opposing views. To clarify these controversies, we assessed astrocyte viability after 2-h middle cerebral artery occlusion in mice. In contrast to neighboring neurons, astrocytes were alive and contained glycogen across the ischemic area 6 h after reperfusion, and at the expanding outer border of the infarct at later time points. These glycogen-positive astrocytes had intact plasma membranes. Astrocytes lost plasmalemma integrity much later than neurons: 19 ± 22 (mean ± standard deviation), 58 ± 14 and 69 ± 3% of astrocytes in the perifocal region became permeable to propidium iodide (PI) at 6, 24, 72 h after ischemia, respectively, in contrast to 81 ± 2, 96 ± 3, 97 ± 2% of neurons. Although more astrocytes in the cortical and subcortical core regions were PI-positive, their numbers were considerably less than those of neurons. Lysosomal rupture (monitored by deoxyribonuclease II immunoreactivity) followed a similar time course. Cytochrome-c immunohistochemistry showed that astrocytes maintained mitochondrial integrity longer than neurons. EM confirmed that astrocyte ultrastructure including mitochondria and lysosomes disintegrated much later than that of neurons. We also found that astrocytes died by a delayed necrosis without significantly activating apoptotic mechanisms although they rapidly swelled at the onset of ischemia. [source]


EFNS guideline on neuroimaging in acute stroke.

EUROPEAN JOURNAL OF NEUROLOGY, Issue 12 2006
Report of an EFNS task force
Neuroimaging techniques are necessary for the evaluation of stroke, one of the leading causes of death and neurological impairment in developed countries. The multiplicity of techniques available has increased the complexity of decision making for physicians. We performed a comprehensive review of the literature in English for the period 1965,2005 and critically assessed the relevant publications. The members of the panel reviewed and corrected an initial draft, until a consensus was reached on recommendations stratified according to the European Federation of Neurological Societies (EFNS) criteria. Non-contrast computed tomography (CT) scan is the established imaging procedure for the initial evaluation of stroke patients. However, magnetic resonance imaging (MRI) has a higher sensitivity than CT for the demonstration of infarcted or ischemic areas and depicts well acute and chronic intracerebral hemorrhage. Perfusion and diffusion MRI together with MR angiography (MRA) are very helpful for the acute evaluation of patients with ischemic stroke. MRI and MRA are the recommended techniques for screening cerebral aneurysms and for the diagnosis of cerebral venous thrombosis and arterial dissection. For the non-invasive study of extracranial vessels, MRA is less portable and more expensive than ultrasonography but it has higher sensitivity and specificity for carotid stenosis. Transcranial Doppler is very useful for monitoring arterial reperfusion after thrombolysis, for the diagnosis of intracranial stenosis and of right-to-left shunts, and for monitoring vasospasm after subarachnoid hemorrhage. Currently, single photon emission computed tomography and positron emission tomography have a more limited role in the evaluation of the acute stroke patient. [source]


The therapeutic effects of retinal laser treatment and vitrectomy.

ACTA OPHTHALMOLOGICA, Issue 5 2001
A theory based on oxygen, vascular physiology
ABSTRACT. The physiologic mechanism of photocoagulation can been seen in the following steps. The physical light energy is absorbed in the melanin of the retinal pigment epithelium. The adjacent photoreceptors are destroyed and are replaced by a glial scar and the oxygen consumption of the outer retina is reduced. Oxygen that normally diffuses from the choriocapillaris into the retina can now diffuse through the laser scars in the photoreceptor layer without being consumed in the mitochondria of the photoreceptors. This oxygen flux reaches the inner retina to relieve inner retinal hypoxia and raise the oxygen tension. As a result, the retinal arteries constrict and the bloodflow decreases. Hypoxia relief reduces production of growth factors such as VEGF and neovascularization is reduced or stopped. Vasoconstriction increases arteriolar resistance, decreases hydrostatic pressure in capillaries and venules and reduces edema formation according to Starling's law. Vitrectomy also improves retinal oxygenation by allowing oxygen and other nutrients to be transported in water currents in the vitreous cavity from well oxygenated to ischemic areas of the retina. Vitrectomy and retinal photocoagulation both improve retinal oxygenation and both reduce diabetic macular edema and retinal neovascularization. [source]