Home About us Contact | |||
Ischemia/reperfusion Injury (ischemia/reperfusion + injury)
Kinds of Ischemia/reperfusion Injury Selected AbstractsINHIBITION OF TISSUE FACTOR EXPRESSED BY ISCHAEMIC CARDIOMYOCYTES REDUCES INFARCT SIZE AFTER MYOCARDIAL ISCHEMIA/REPERFUSION INJURYNEPHROLOGY, Issue 3 2000Erlich Jh [source] Alloimmune Activation Enhances Innate Tissue Inflammation/Injury in a Mouse Model of Liver Ischemia/Reperfusion InjuryAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2010X. Shen The deleterious sensitization to donor MHC Ags represents one of the most challenging problems in clinical organ transplantation. Although the role of effector/memory T cells in the rejection cascade has been extensively studied, it remains unknown whether and how these ,Ag-specific' cells influence host innate immunity, such as tissue inflammation associated with ischemia and reperfusion injury (IRI). In this study, we analyzed how allogeneic skin transplant (Tx) affected the sequel of host's own liver damage induced by partial warm ischemia and reperfusion. Our data clearly showed that allo-Tx recipients had increased inflammatory response against IR insult in their native livers, as evidenced by significantly more severe hepatocelluar damage, compared with syngeneic Tx recipient controls, and determined by serum ALT levels, liver histology (Suzuki's score) and intrahepatic proinflammatory gene inductions (TNF-,, IL-1, and CXCL10). The CD4 T cells, but neither CD8 nor NK cells, mediated the detrimental effect of allo-Ag sensitization in liver IRI. Furthermore, CD154, but not IFN-,, was the key mechanism in allo-Tx recipients to facilitate IR-triggered liver damage. These results provide new evidence that alloreactive CD4 T cells are capable of enhancing innate tissue inflammation and organ injury via an Ag-nonspecific CD154-dependent but IFN-, independent mechanism. [source] Ex vivo Application of Carbon Monoxide in UW Solution Prevents Transplant-Induced Renal Ischemia/Reperfusion Injury in PigsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2010J. Yoshida I/R injury is a major deleterious factor of successful kidney transplantation (KTx). Carbon monoxide (CO) is an endogenous gaseous regulatory molecule, and exogenously delivered CO in low concentrations provides potent cytoprotection. This study evaluated efficacies of CO exposure to excised kidney grafts to inhibit I/R injury in the pig KTx model. Porcine kidneys were stored for 48 h in control UW or UW supplemented with CO (CO-UW) and autotransplanted in a 14-day follow-up study. In the control UW group, animal survival was 80% (4/5) with peak serum creatinine levels of 12.0 ± 5.1 mg/dL. CO-UW showed potent protection, and peak creatinine levels were reduced to 6.9 ± 1.4 mg/dL with 100% (5/5) survival without any noticeable adverse event or abnormal COHb value. Control grafts at 14 days showed significant tubular damages, focal fibrotic changes and numerous infiltrates. The CO-UW group showed significantly less severe histopathological changes with less TGF-, and p-Smad3 expression. Grafts in CO-UW also showed significantly lower early mRNA levels for proinflammatory cytokines and less lipid peroxidation. CO in UW provides significant protection against renal I/R injury in the porcine KTx model. Ex vivo exposure of kidney grafts to CO during cold storage may therefore be a safe strategy to reduce I/R injury. [source] Ischemic Preconditioning (IP) of the Liver as a Safe and Protective Technique against Ischemia/Reperfusion Injury (IRI)AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2009A. Franchello The aim of the study was to evaluate safety and efficacy of IP in LT, particularly in marginal grafts. From 2007 to 2008, 75 LT donors were randomized to receive IP (IP+) or not (IP,). Considering the graft quality, we divided the main groups in two subgroups (marg+/marg,). IP was performed by 10-min inflow occlusion (Pringle maneuver utilizing a toruniquet). Donor variables considered were gender, age, AST/ALT, ischemia time and steatosis. Recipient variables were gender, age, indication to LT and MELD/CHILD/UNOS score. AST/ALT levels, INR, bilirubin, lactic acid, bile output on postoperative days 1, 3 and 7 were evaluated. Histological analysis was performed evaluating necrosis/steatosis, hepatocyte swelling, PMN infiltration and councilman bodies. Thirty patients received IP+ liver. No differences were seen between groups considering recipient and donor variables. Liver function and AST/ALT levels showed no significant differences between the main two groups. Marginal IP+ showed lower AST levels on day1 compared with untreated marginal livers (936.35 vs. 1268.23; p = 0.026). IP+ livers showed a significant reduction of moderate-severe hepatocyte swelling (33.3% vs. 65.9%; p = 0.043). IP+ patients had a significant reduction of positive early microbiological investigations (36.7% vs. 57.1%; p = 0.042). In our experience IP was safe also in marginal donors, showing a protective role against IRI. [source] An In Vivo Autotransplant Model of Renal Preservation: Cold Storage Versus Machine Perfusion in the Prevention of Ischemia/Reperfusion InjuryARTIFICIAL ORGANS, Issue 7 2009Gaetano La Manna Abstract There is increasing proof that organ preservation by machine perfusion is able to limit ischemia/reperfusion injury in kidney transplantation. This study was designed to compare the efficiency in hypothermic organ preservation by machine perfusion or cold storage in an animal model of kidney autotransplantation. Twelve pigs underwent left nephrectomy after warm ischemic time; the organs were preserved in machine perfusion (n = 6) or cold storage (n = 6) and then autotransplanted with immediate contralateral nephrectomy. The following parameters were compared between the two groups of animals: hematological and urine indexes of renal function, blood/gas analysis values, histological features, tissue adenosine-5,-triphosphate (ATP) content, perforin gene expression in kidney biopsies, and organ weight changes were compared before and after preservation. The amount of cellular ATP was significantly higher in organs preserved by machine perfusion; moreover, the study of apoptosis induction revealed an enhanced perforin expression in the kidneys, which underwent simple hypothermic preservation compared to the machine-preserved ones. Organ weight was significantly decreased after cold storage, but it remained quite stable for machine-perfused kidneys. The present model seems to suggest that organ preservation by hypothermic machine perfusion is able to better control cellular impairment in comparison with cold storage. [source] Significance of determining the point of reperfusion failure in experimental torsion of testisINTERNATIONAL JOURNAL OF UROLOGY, Issue 1 2005ELIJAH O KEHINDE Abstract Background:, Experimental studies of the use of free radical scavengers in ischemic/reperfusion (I/R) injury following detorsion of the torted testis have yielded conflicting results due to differences in the period of ischemia used. The authors studied I/R injury in the rabbit model, to define the point beyond which there is reperfusion failure. Methods:, Ischemia/reperfusion injury of the testis was created in 3,6-month-old male New Zealand white rabbits by cross-clamping the left spermatic cord for periods of ischemia lasting 0, 15, 30, 60, 90, 120 and 180 min. There were eight animals per experimental group. The right testis served as internal control. Both testes were harvested after 24 h of reperfusion in four animals and after 3 months in the remaining four animals for each group. Testicular malondialdehyde (MDA), a measure of free radical damage, was determined by using the thiobarbituric acid reaction on testicular homogenates. Johnsen score was used to assess morphological damage caused by the ischemia. Results:, After 24 h of reperfusion, the mean testicular MDA in the control right testes at 0, 15, 30, 60, 90, 120 and 180 min was 2.1, 2.5, 2.9, 2.4, 2.1 and 1.9 nmol/mg protein, respectively. The mean left testicular MDA at corresponding ischemic periods was 1.6, 2.0, 3.9, 10.0, 4.4, 6.1 and 1.0 nmol/mg protein, respectively. The maximum left testicular MDA was at 60 min (10.0 nmol/mg protein), following which the level dropped significantly to 1.0 nmol/mg protein at 180 min. At 3 months, the mean Johnsen scores for left testes subjected to 0, 60, 120 and 180 min ischemia were 9.4, 8.8, 2.3, 3.5, respectively. Conclusion:, The results suggest that following ischemia of up to 60 min in the rabbit testis, adequate reperfusion is possible, but ischemia lasting beyond 60 min results in inadequate reperfusion leading to irreversible damage. Thus, in experiments for assessing the effect of antioxidants on I/R injury of the testis in rabbits, periods up to 60 min of ischemia should be regarded as optimum to observe an effect. [source] Blockade of KATP Channels Reduces Endothelial Hyperpolarization and Leukocyte Recruitment upon Reperfusion After HypoxiaAMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2009M. Figura Ischemia/reperfusion injury in renal transplantation leads to slow or initial nonfunction, and predisposes to acute and chronic rejection. In fact, severe ischemia reperfusion injury can significantly reduce graft survival, even with modern immunosuppressive agents. One of the mechanisms by which ischemia/reperfusion causes injury is activation of endothelial cells resulting in inflammation. Although several therapies can be used to prevent leukocyte recruitment to ischemic vessels (e.g. antiadhesion molecule antibodies), there have been no clinical treatments reported that can prevent initial immediate neutrophil recruitment upon reperfusion. Using intravital microscopy, we describe abrogation of immediate neutrophil recruitment to ischemic microvessels by the KATP antagonist glibenclamide (GlyburideÔ). Further, we show that glibenclamide can reduce leukocyte recruitment in vitro under physiologic flow conditions. ATP-regulated potassium channels (KATP) are important in the control of cell membrane polarization. Here we describe profound hyperpolarization of endothelial cells during hypoxia, and the reduction of this hyperpolarization using glibenclamide. These findings suggest that control of endothelial membrane potential during ischemia may be an important therapeutic tool in avoiding ischemia/reperfusion injury, and therefore, enhancing transplant long-term function. [source] Diannexin, a Novel Annexin V Homodimer, Protects Rat Liver Transplants Against Cold Ischemia-Reperfusion InjuryAMERICAN JOURNAL OF TRANSPLANTATION, Issue 11 2007X.-D. Shen Ischemia/reperfusion injury (IRI) remains an important problem in clinical transplantation. Following ischemia, phosphatidylserine (PS) translocates to surfaces of endothelial cells (ECs) and promotes the early attachment of leukocytes/platelets, impairing microvascular blood flow. Diannexin, a 73 KD homodimer of human annexin V, binds to PS, prevents attachment of leukocytes/platelets to EC, and maintains sinusoidal blood flow. This study analyzes whether Diannexin treatment can prevent cold IRI in liver transplantation. Rat livers were stored at 4°C in UW solution for 24 h, and then transplanted orthotopically (OLT) into syngeneic recipients. Diannexin (200 ,g/kg) was infused into: (i) donor livers after recovering and before reperfusion, (ii) OLT recipients at reperfusion and day +2. Controls consisted of untreated OLTs. Both Diannexin regimens increased OLT survival from 40% to 100%, depressed sALT levels, and decreased hepatic histological injury. Diannexin treatment decreased TNF-,, IL-1,, IP-10 expression, diminished expression of P-selectin, endothelial ICAM-1, and attenuated OLT infiltration by macrophages, CD4 cells and PMNs. Diannexin increased expression of HO-1/Bcl-2/Bcl-xl, and reduced Caspase-3/TUNEL+ apoptotic cells. Thus, by modulating leukocyte/platelet trafficking and EC activation in OLTs, Diannexin suppressed vascular inflammatory responses and decreased apoptosis. Diannexin deserves further exploration as a novel agent to attenuate IRI, and thereby improve OLT function/increase organ donor pool. [source] Role of mitochondrial ion channels in cell deathBIOFACTORS, Issue 4 2010Shin-Young Ryu Abstract Ion channels located in the outer and inner mitochondrial membranes are key regulators of cellular signaling for life and death. Permeabilization of mitochondrial membranes is one of the most critical steps in the progression of several cell death pathways. The mitochondrial apoptosis-induced channel (MAC) and the mitochondrial permeability transition pore (mPTP) play major roles in these processes. Here, the most recent progress and current perspectives about the roles of MAC and mPTP in mitochondrial membrane permeabilization during cell death are presented. The crosstalk signaling of MAC and mPTP formation/activation mediated by cytosolic Ca2+ signaling, Bcl-2 family proteins, and other mitochondrial ion channels is also discussed. Understanding the mechanisms that regulate opening and closing of MAC and mPTP has revealed new therapeutic targets that potentially could control cell death in pathologies such as cancer, ischemia/reperfusion injuries, and neurodegenerative diseases. [source] Post-ischaemic activation of kinases in the pre-conditioning-like cardioprotective effect of the platelet-activating factorACTA PHYSIOLOGICA, Issue 3 2009C. Penna Abstract Aim:, Platelet-activating factor (PAF) triggers cardiac pre-conditioning against ischemia/reperfusion injury. The actual protection of ischaemic pre-conditioning occurs in the reperfusion phase. Therefore, we studied in this phase the kinases involved in PAF-induced pre-conditioning. Methods:, Langendorff-perfused rat hearts underwent 30 min of ischaemia and 2 h of reperfusion (group 1, control). Before ischaemia, group 2 hearts were perfused for 19 min with PAF (2 × 10,11 m); groups 3,5 hearts were co-infused during the initial 20 min of reperfusion, with the protein kinase C (PKC) inhibitor chelerythrine (5 × 10,6 m) or the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (5 × 10,5 m) and atractyloside (2 × 10,5 m), a mitochondrial permeability transition pore (mPTP) opener respectively. Phosphorylation of PKC,, PKB/A,t, GSK-3, and ERK1/2 at the beginning of reperfusion was also checked. Left ventricular pressure and infarct size were determined. Results:, PAF pre-treatment reduced infarct size (33 ± 4% vs. 64 ± 5% of the area at risk of control hearts) and improved pressure recovery. PAF pre-treatment enhanced the phosphorylation/activation of PKC,, PKB/A,t and the phosphorylation/inactivation of GSK-3, at reperfusion. Effects on ERK1/2 phosphorylation were not consistent. Infarct-sparing effect and post-ischaemic functional improvement induced by PAF pre-treatment were abolished by post-ischaemic infusion of either chelerythrine, LY294002 or atractyloside. Conclusions:, The cardioprotective effect exerted by PAF pre-treatment involves activation of PKC and PI3K in post-ischaemic phases and might be mediated by the prevention of mPTP opening in reperfusion via GSK-3, inactivation. [source] Cardiovascular effects of the thiazolidinedionesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2006Rehan Qayyum Abstract Thiazolidinediones, used for the treatment of diabetes mellitus type 2, modulate gene expression by binding to nuclear transcription factor, peroxisome proliferator-activated receptor-gamma. Peroxisome proliferator,activated receptor-gamma is expressed in several tissues, therefore, thiazolidinediones have biological effects on multiple organ systems. Here, we describe evidence that thiazolidinediones have beneficial effects on the cardiovascular system independent of their antidiabetic effect. Studies in animals have clearly shown that thiazolidinediones decrease blood pressure, left ventricular hypertrophy, development of atherosclerotic lesions, and protect myocardium from ischemia/reperfusion injury. Although relatively few studies in humans have been reported, the preponderance of available evidence suggests a beneficial effect of thiazolidinediones. Thus, by modulating gene expression, thiazolidinediones may provide a novel method for the prevention and treatment of cardiovascular diseases. Copyright © 2005 John Wiley & Sons, Ltd. [source] Biliverdin therapy protects rat livers from ischemia and reperfusion injuryHEPATOLOGY, Issue 6 2004Constantino Fondevila Heme oxygenase (HO-1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate-limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was designed to explore putative cytoprotective functions of BV during hepatic IRI in rat liver models of ex vivo perfusion and orthotopic liver transplantation (OLT) after prolonged periods of cold ischemia. In an ex vivo hepatic IRI model, adjunctive BV improved portal venous blood flow, increased bile production, and decreased hepatocellular damage. These findings were correlated with amelioration of histological features of IRI, as assessed by Suzuki's criteria. Following cold ischemia and syngeneic OLT, BV therapy extended animal survival from 50% in untreated controls to 90% to 100%. This effect correlated with improved liver function and preserved hepatic architecture. Additionally, BV adjuvant after OLT decreased endothelial expression of cellular adhesion molecules (P-selectin and intracellular adhesion molecule 1), and decreased the extent of infiltration by neutrophils and inflammatory macrophages. BV also inhibited expression of inducible nitric oxide synthase and proinflammatory cytokines (interleukin 1,, tumor necrosis factor ,, and interleukin 6) in OLTs. Finally, BV therapy promoted an increased expression of antiapoptotic molecules independently of HO-1 expression, consistent with BV being an important mediator through which HO-1 prevents cell death. In conclusion, this study documents and dissects potent cytoprotective effects of BV in well-established rat models of hepatic IRI. Our results provide the rationale for a novel therapeutic approach using BV to maximize the function and thus the availability of donor organs. (HEPATOLOGY 2004;40:1333,1341.) [source] Interleukin 6 alleviates hepatic steatosis and ischemia/reperfusion injury in mice with fatty liver diseaseHEPATOLOGY, Issue 4 2004Feng Hong Fatty liver, formerly associated predominantly with excessive alcohol intake, is now also recognized as a complication of obesity and an important precursor state to more severe forms of liver pathology including ischemia/reperfusion injury. No standard protocol for treating fatty liver exists at this time. We therefore examined the effects of 10 days of interleukin 6 (IL-6) injection in 3 murine models of fatty liver: leptin deficient ob/ob mice, ethanol-fed mice, and mice fed a high-fat diet. In all 3 models, IL-6 injection decreased steatosis and normalized serum aminotransferase. The beneficial effects of IL-6 treatment in vivo resulted in part from an increase in mitochondrial , oxidation of fatty acid and an increase in hepatic export of triglyceride and cholesterol. However, administration of IL-6 to isolated cultured steatotic hepatocytes failed to decrease lipid contents, suggesting that the beneficial effects of IL-6 in vivo do not result from its effects on hepatocytes alone. IL-6 treatment increased hepatic peroxisome proliferator-activated receptor (PPAR) , and decreased liver and serum tumor necrosis factor (TNF) ,. Finally, 10 days of treatment with IL-6 prevented the susceptibility of fatty livers to warm ischemia/reperfusion injury. In conclusion, long-term IL-6 administration ameliorates fatty livers and protects against warm ischemia/reperfusion fatty liver injury, suggesting the therapeutic potential of IL-6 in treating human fatty liver disease. Supplementary material for this article can be found on the Hepatology website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2004;40:933,941.) [source] Interleukin 18 causes hepatic ischemia/reperfusion injury by suppressing anti-inflammatory cytokine expression in miceHEPATOLOGY, Issue 3 2004Dan Takeuchi Hepatic ischemia/reperfusion injury is a clinically important problem. While the mechanisms of the initial event and subsequent neutrophil-dependent injury are somewhat understood, little is known about the regulation of endogenous hepatoprotective effects on this injury. Interleukin 12 (IL-12) plays a role in the induction of this injury, but involvement of interleukin 18 (IL-18) has not been clarified. Using a murine model of partial hepatic ischemia and subsequent reperfusion, the aim of the current study was to determine whether IL-18 is up-regulated during hepatic ischemia/reperfusion and to determine the role of endogenous IL-18 in the development and regulation of inflammatory hepatic ischemia/reperfusion injury. Hepatic IL-18 expression was up-regulated from 1 to 8 hours after reperfusion. Hepatic ischemia/reperfusion induced nuclear factor-,B (NF-,B) and activator protein 1 (AP-1) activation, as defined by electrophoretic mobility shift assay, and caused significant increases in liver neutrophil recruitment, apoptosis, hepatocellular injury, and liver edema as defined by liver myeloperoxidase content, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end-labeling (TUNEL) staining, serum aminotransferase levels, and liver wet-to-dry weight ratios. In mice treated with neutralizing antibody to IL-18, ischemia/reperfusion-induced increases in CXC chemokine expression, activation of NF-,B and AP-1, and apoptosis were greatly reduced. Furthermore, under blockade of IL-18, anti-inflammatory cytokines such as IL-4 and IL-10 were greatly up-regulated. Signal transducer and activator of transcription 6 (STAT6) was significantly activated under blockade of IL-18. These conditions also caused significant reduction in liver neutrophil sequestration and liver injury. In conclusion, the data suggest that IL-18 is required for facilitating neutrophil-dependent hepatic ischemia/reperfusion injury through suppressing anti-inflammatory cytokine expression. (HEPATOLOGY 2004;39:699,710.) [source] Stat4 and Stat6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 disruption-mediated cytoprotectionHEPATOLOGY, Issue 2 2003Xiu-Da Shen Ischemia/reperfusion (I/R) injury remains an important problem in clinical organ transplantation. There is growing evidence that T lymphocytes, and activated CD4+ T cells in particular, play a key role in hepatic I/R injury. This study analyzes the role of signal transducer and activator of transcription 4 (Stat4) and Stat6 signaling in liver I/R injury. Using a partial lobar warm ischemia model, groups of wild-type (WT), T cell,deficient, Stat4-/Stat6-deficient knockout (KO) mice were assessed for the extent/severity of I/R injury. Ninety minutes of warm ischemia followed by 6 hours of reperfusion induced a fulminant liver failure in WT and Stat6 KO mice, as assessed by hepatocellular damage (serum alanine aminotransferase [sALT] levels), neutrophil accumulation (myeloperoxidase [MPO] activity) and histology (Suzuki scores). In contrast, T cell deficiency (nu/nu mice) or disruption of Stat4 signaling (Stat4 KO mice) reduced I/R insult. Unlike adoptive transfer of WT or Stat6-deficient T cells, infusion of Stat4-deficient T cells failed to restore hepatic I/R injury and prevented tumor necrosis factor , (TNF-,) production in nu/nu mice. Diminished TNF-,/Th1-type cytokine messenger RNA (mRNA)/protein elaborations patterns, along with overexpression of heme oxygenase-1 (HO-1),accompanied hepatic cytoprotection in Stat4 KO recipients. In contrast, HO-1 depression restored hepatic injury in otherwise I/R resistant Stat4 KOs. In conclusion, Stat4 signaling is required for, whereas Stat4 disruption protects against, warm hepatic I/R injury in mice. The cytoprotection rendered by Stat4 disruption remains HO-1,dependent. [source] Enhanced expression of B7-1, B7-2, and intercellular adhesion molecule 1 in sinusoidal endothelial cells by warm ischemia/reperfusion injury in rat liverHEPATOLOGY, Issue 4 2001Naosuke Kojima To elucidate a role of costimulatory molecule and cell adhesion molecule in hepatic ischemia/reperfusion injury, we examined an alteration in B7-1 (CD80), B7-2 (CD86), and intercellular adhesion molecule 1 (ICAM-1; CD54) expression in the rat liver after warm ischemia/reperfusion injury. To induce hepatic warm ischemia in a rat model, both portal vein and hepatic artery entering the left-lateral and median lobes were occluded by clamping for 30 minutes or 60 minutes, and then reperfused for 24 hours. B7-1, B7-2, and ICAM-1 expressions in the liver were analyzed by immunofluorescence staining and real-time reverse transcription polymerase chain reaction (RT-PCR). Although B7-1 and B7-2 expressions were at very low levels in the liver tissues from normal or sham-operated control rats, both B7-1 and B7-2 expressions were enhanced at protein and messenger RNA (mRNA) levels in the affected, left lobes after warm ischemia/reperfusion. ICAM-1 protein and mRNA were constitutively expressed in the liver of normal and sham-operated control rats, and further up-regulated after warm ischemia/reperfusion. Localization of increased B7-1, B7-2, and ICAM-1 proteins, as well as von Willebrand factor as a marker protein for endothelial cells, was confined by immunofluorescence staining to sinusoidal endothelial cells in hepatic lobules. Data from quantitative real-time RT-PCR analysis revealed that B7-1 and B7-2 mRNA levels were elevated in hepatic lobes after warm ischemia/reperfusion (5.13- and 52.9-fold increase, respectively), whereas ICAM-1 mRNA expression was rather constitutive but further enhanced by warm ischemia/reperfusion (4.24-fold increase). These results suggest that hepatic sinusoidal endothelial cells play a pivotal role as antigen-presenting cells by expressing B7-1 and B7-2 in warm hepatic ischemia/reperfusion injury, and that B7-1 and/or B7-2 might be the primary target to prevent early rejection and inflammatory reactions after hepatic ischemia/reperfusion injury associated with liver transplantation. [source] Current studies on therapeutic approaches for ischemia/reperfusion injury in steatotic liversHEPATOLOGY RESEARCH, Issue 9 2008Chengfu Xu Steatotic livers are particularly vulnerable to ischemia/reperfusion (I/R) injury, resulting in poor outcomes following liver surgery and transplantation. Therapeutic approaches for I/R injury in steatotic livers are currently under intensive investigation. This review summarizes and discusses the approaches developed during the last few years to prevent hepatic I/R injury in steatotic livers. Among the proposed approaches, ischemic preconditioning and intermittent clamping are the two most promising approaches that have been applied in some clinical centers for liver surgery and transplantation, but most of others have not reached clinical application yet. [source] Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitroJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Ruiqin Liu Abstract This study was designed to investigate the neuroprotective effect of intrinsic and extrinsic erythropoietin (EPO) against hypoxia/ischemia, and determine the optimal time-window with respect to the EPO-induced neuroprotection. Experiments were conducted using primary mixed neuronal/astrocytic cultures and neuron-rich cultures. Hypoxia (2%) induces hypoxia-inducible factor-1, (HIF-1,) activity followed by strong EPO expression in mixed cultures and weak expression in neuron-rich cultures as documented by both western blot and RT,PCR. Immunoreactive EPO was strongly detected in astrocytes, whereas EPOR was only detected in neurons. Neurons were significantly damaged in neuron-rich cultures but were distinctly rescued in mixed cultures. Application of recombinant human EPO (rhEPO) (0.1 U/mL) within 6 h before or after hypoxia significantly increased neuronal survival compared with no rhEPO treatment. Application of rhEPO after onset of reoxygenation achieved the maximal neuronal protection against ischemia/reperfusion injury (6 h hypoxia followed 24 h reoxygenation). Our results indicate that HIF-1, induces EPO gene released by astrocytes and acts as an essential mediator of neuroprotection, prove the protective role of intrinsic astrocytic-neuronal signaling pathway in hypoxic/ischemic injury and demonstrate an optimal therapeutic time-window of extrinsic rhEPO in ischemia/reperfusion injury in vitro. The results point to the potential beneficial effects of HIF-1, and EPO for the possible treatment of stroke. [source] Melatonin protects kidney grafts from ischemia/reperfusion injury through inhibition of NF-kB and apoptosis after experimental kidney transplantationJOURNAL OF PINEAL RESEARCH, Issue 4 2009Zhanqing Li Abstract:, Free radicals are involved in pathophysiology of ischemia/reperfusion injury (IRI). Melatonin is a potent scavenger of reactive oxygen and nitrogen species. Thus, this study was designed to elucidate its effects in a model of rat kidney transplantation. Twenty Lewis rats were randomly divided into 2 groups (n = 10 animals each). Melatonin (50 mg/kg BW) dissolved in 5 mL milk was given to one group via gavage 2 hr before left donor nephrectomy. Controls were given the same volume of milk only. Kidney grafts were then transplanted into bilaterally nephrectomized syngeneic recipients after 24 hr of cold storage in Histidine,Tryptophan,Ketoglutarate solution. Both graft function and injury were assessed after transplantation through serum levels of blood urea nitrogen (BUN), creatinine, transaminases, and lactate dehydrogenase (LDH). Biopsies were taken to evaluate tubular damage, the enzymatic activity of superoxide dismutase (SOD) and lipid hydroperoxide (LPO), and the expression of NF-kBp65, inducible nitric oxide synthase (iNOS), caspase-3 as indices of oxidative stress, necrosis, and apoptosis, respectively. Melatonin improved survival (P < 0.01) while decreasing BUN, creatinine, transaminases, and LDH values up to 39,71% (P < 0.05). Melatonin significantly reduced the histological index for tubular damage, induced tissue enzymatic activity of SOD while reducing LPO. At the same time, melatonin down-regulated the expression of NF-kBp65, iNOS, and caspase-3. In conclusion, donor preconditioning with melatonin protected kidney donor grafts from IRI-induced renal dysfunction and tubular injury most likely through its anti-oxidative, anti-apoptotic and NF-kB inhibitory capacity. [source] Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke modelJOURNAL OF PINEAL RESEARCH, Issue 2 2004Zhong Pei Abstract:, Inflammatory response following cerebral ischemia/reperfusion plays a key pathogenic role in ischemic cerebral damage. Nitric oxide (NO), cyclooxygenase-2 (COX-2) and myeloperoxidase (MPO) are important inflammatory mediators. Neuronal NO synthase (nNOS) is a major initial source of excessive NO during ischemia/reperfusion. Induction of COX-2 and infiltration of polymorphonuclear cells expressing MPO are critical factors in delayed inflammatory damage. Previously, we demonstrated that administration of melatonin before ischemia significantly reduced the infarct volume in a rat middle cerebral artery occlusion (MCAO) stroke model. In this study, we examined the effect of pretreatment with melatonin at 5 mg/kg on the immunoreactivity (ir) for nNOS, COX-2, MPO, and glial fibrillary acidic protein (GFAP) at 24, 48, and 72 hr after right-sided endovascular MCAO for 1 hr in adult male Sprague,Dawley rats. Melatonin did not affect the hemodynamic parameters. When compared with rats with sham MCAO, ischemia/reperfusion led to an ipsilateral increase in cells with positive ir for nNOS (similar at all times) and in ir-GFAP (similar at all times). Ischemia/reperfusion led to appearance of cells with positive ir for COX-2 (greatest at 24 hr with a tendency to increase again at 72 hr) or MPO (greatest at 24 hr). A single dose of melatonin significantly lessened the ipsilateral increase in cells with positive ir for nNOS, COX-2 or MPO, but did not influence the ipsilateral change in ir-GFAP. Our results suggest that melatonin treatment mediates neuroprotection against ischemia/reperfusion injury partly via inhibition of the consequential inflammatory response. [source] Active site inhibited factor VIIa attenuates myocardial ischemia/reperfusion injury in miceJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2009S. T. B. G. LOUBELE Summary.,Background:,Inhibition of specific coagulation pathways such as the factor VIIa-tissue factor complex has been shown to attenuate ischemia/reperfusion (I/R) injury, but the cellular mechanisms have not been explored. Objectives:,To determine the cellular mechanisms involved in the working mechanism of active site inhibited factor VIIa (ASIS) in the protection against myocardial I/R injury. Methods:,We investigated the effects of a specific mouse recombinant in a mouse model of myocardial I/R injury. One hour of ischemia was followed by 2, 6 or 24 h of reperfusion. Mouse ASIS or placebo was administered before and after induction of reperfusion. Results:,ASIS administration reduced myocardial I/R injury by more than 40% at three reperfusion times. Multiplex ligation dependent probe amplification (MLPA) analysis showed reduced mRNA expression in the ischemic myocardium of CD14, TLR-4, interleukin-1 (IL-1) receptor-associated kinase (IRAK) and I,B, upon ASIS administration, indicative of inhibition of toll-like receptor-4 (TLR-4) and subsequent nuclear factor-,B (NF-,B) mediated cell signaling. Levels of nuclear activated NF-,B and proteins influenced by the NF-,B pathway including tissue factor (TF) and IL-6 that were increased after I/R, were attenuated upon ASIS administration. After 6 and 24 h of reperfusion, neutrophil infiltration into the area of infarction was decreased upon ASIS administration. There was, however, no evidence of an effect of ASIS on apoptosis (Tunel staining and MLPA analysis). Conclusions:,We conclude that the diminished amount of myocardial I/R injury after ASIS administration is primarily due to attenuated inflammation-related lethal I/R injury, probably mediated through the NF-,B mechanism. [source] A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-, expressionLIVER TRANSPLANTATION, Issue 11 2009Haley E. Ramsey The nuclear factor-,B inhibitory protein A20 demonstrates hepatoprotective abilities through combined antiapoptotic, anti-inflammatory, and pro-proliferative functions. Accordingly, overexpression of A20 in the liver protects mice from toxic hepatitis and lethal radical hepatectomy, whereas A20 knockout mice die prematurely from unfettered liver inflammation. The effect of A20 on oxidative liver damage, as seen in ischemia/reperfusion injury (IRI), is unknown. In this work, we evaluated the effects of A20 upon IRI using a mouse model of total hepatic ischemia. Hepatic overexpression of A20 was achieved by recombinant adenovirus (rAd.)-mediated gene transfer. Although only 10%-25% of control mice injected with saline or the control rAd., galactosidase survived IRI, the survival rate reached 67% in mice treated with rAd.A20. This significant survival advantage in rAd.A20-treated mice was associated with improved liver function, pathology, and repair potential. A20-treated mice had significantly lower bilirubin and aminotransferase levels, decreased hemorrhagic necrosis and steatosis, and increased hepatocyte proliferation. A20 protected against liver IRI by increasing hepatic expression of peroxisome proliferator-activated receptor alpha (PPAR,), a regulator of lipid homeostasis and of oxidative damage. A20-mediated protection of hepatocytes from hypoxia/reoxygenation and H2O2 -mediated necrosis was reverted by pretreatment with the PPAR, inhibitor MK886. In conclusion, we demonstrate that PPAR, is a novel target for A20 in hepatocytes, underscoring its novel protective effect against oxidative necrosis. By combining hepatocyte protection from necrosis and promotion of proliferation, A20-based therapies are well-poised to protect livers from IRI, especially in the context of small-for-size and steatotic liver grafts. Liver Transpl 15:1613,1621, 2009. © 2009 AASLD. [source] High mobility group box 1 protein as a marker of hepatocellular injury in human liver transplantationLIVER TRANSPLANTATION, Issue 10 2008Minna Ilmakunnas High mobility group box 1 protein (HMGB1), a cytokine actively secreted by phagocytes and passively released from necrotic cells, is an inflammatory mediator in experimental hepatic ischemia/reperfusion injury. We characterized its expression in human liver transplantation. In 20 patients, in addition to systemic samples, blood was drawn from portal and hepatic veins during and after reperfusion to assess changes within the graft. Plasma HMGB1, tumor necrosis factor , (TNF-,), and interleukin-6 (IL-6) levels were measured, and HMGB1 immunohistochemistry was performed on biopsies taken before and after reperfusion. Plasma HMGB1 was undetectable before reperfusion, and levels in systemic circulation peaked after graft reperfusion. At portal declamping, HMGB1 levels were substantially higher in the caval effluent [188 (80-371) ng/mL] than in portal venous blood [0 (0-3) ng/mL, P < 0.001]. HMGB1 release from the graft continued thereafter. HMGB1 levels were not related to TNF-, or IL-6 levels. HMGB1 expression was up-regulated in biopsies taken after reperfusion (P = 0.020), with intense hepatocyte and weak neutrophil staining. HMGB1 levels in hepatic venous blood correlated with graft steatosis (r = 0.497, P = 0.03) and peak postoperative alanine aminotransferase levels (r = 0.588, P = 0.008). Our results indicate that HMGB1 originates from the graft and is a marker of hepatocellular injury in human liver transplantation. Liver Transpl 14:1517,1525, 2008. © 2008 AASLD. [source] The membrane attack complex (C5b-9) in liver cold ischemia and reperfusion injuryLIVER TRANSPLANTATION, Issue 8 2008Constantino Fondevila Activation of the complement cascade represents an important event during ischemia/reperfusion injury (IRI). This work was designed to investigate the role of the membrane attack complex (MAC; C5b-9) in the pathogenesis of hepatic IRI. Livers from B&W/Stahl/rC6(+) and C6(,) rats were harvested, stored for 24 hours at 4°C, and then transplanted [orthotopic liver transplantation (OLT)] to syngeneic recipients. There were 4 experimental groups: (1) C6(+),C6(+), (2) C6(+),C6(,), (3) C6(,),C6(+), and (4) C6(,),C6(,). At day +1, C6(,) OLTs showed decreased vascular congestion/necrosis, contrasting with extensive necrosis in C6(+) livers, that was independent of the recipient C6 status (Suzuki score: 7.2 ± 0.9, 7.3 ± 1.3, 4.5 ± 0.6, and 4.8 ± 0.4 for groups 1-4, respectively, P < 0.05). The liver function improved in recipients of C6(,) grafts (serum glutamic oxaloacetic transaminase: 2573 ± 488, 1808 ± 302, 1170 ± 111, and 1188 ± 184 in groups 1-4, respectively, P < 0.05). Intragraft macrophage infiltration (ED-1 immunostaining) and neutrophil infiltration (myeloperoxidase activity) were reduced in C6(,) grafts versus C6(+) grafts (P = 0.001); these data were confirmed by esterase staining (naphthol). The expression of proinflammatory interferon-,, interleukin-1,, and tumor necrosis factor messenger RNA/protein was also reduced in C6(,) OLTs in comparison with C6(+) OLTs. Western blot,assisted expression of proapoptotic caspase-3 was decreased in C6(,) OLTs versus C6(+) OLTs (P = 0.006), whereas antiapoptotic Bcl-2/Bag-1 was enhanced in C6(,) OLTs compared with C6(+) OLTs (P = 0.001). Terminal deoxynucleotidyl transferase,mediated dUTP nick end-labeling staining of apoptotic cells was enhanced (P < 0.05) in C6(+) OLTs compared with C6(,) OLTs. Thus, the terminal products of the complement system are essential in the mechanism of hepatic IRI. This is the first report using a clinically relevant liver cold ischemia model to show that local MAC inhibition attenuates IRI cascade in OLT recipients. Liver Transpl 14:1133,1141, 2008. © 2008 AASLD. [source] Transhepatic lactate gradient in relation to liver ischemia/reperfusion injury during major hepatectomiesLIVER TRANSPLANTATION, Issue 12 2006Kassiani Theodoraki Hepatectomies performed under selective hepatic vascular exclusion are associated with a series of events culminating in ischemia/reperfusion injury, a state that shares common characteristics with situations known to result in global or regional hyperlactatemia. Accordingly, we sought to determine whether lactate is released by the liver during hepatic resections performed under blood flow deprivation and what relation this has to a possible systemic hyperlactatemic state. After ethical approval, 14 consecutive patients with resectable liver tumors subjected to hepatectomy under inflow and outflow occlusion of the liver were studied. Lactate concentrations were assessed in simultaneously drawn arterial, portal venous, and hepatic venous blood before liver dissection and 50 minutes postreperfusion. Moreover, the transhepatic lactate gradient (hepatic vein , portal vein) was calculated to see if there was net production or consumption of lactate. Before hepatic dissection, the transhepatic lactate gradient was negative, suggesting consumption by the liver. Fifty minutes after reperfusion, this gradient became significantly positive, demonstrating release of lactate by the liver (0.12 ± 0.31 vs. ,0.38 ± 0.30 mmol/L, P < 0.05). The magnitude of lactate release correlated with systemic arterial lactate levels at the same time point (r2 = 0.63, P < 0.001). A weaker but significant correlation was demonstrated between the transhepatic lactate gradient postreperfusion and systemic arterial lactate levels 24 hours postoperatively (r2 = 0.41, P = 0.013). A strong correlation between the transhepatic lactate gradient postreperfusion and peak postoperative aspartate aminotransferase values was also demonstrated (r2 = 0.73, P < 0.001). The liver becomes a net producer of lactate in hepatectomies performed under blood flow deprivation. This lactate release can explain some of the systemic hyperlactatemia seen in this context and relates to the extent of ischemia/reperfusion injury. Liver Transpl 12:1825-1831, 2006. © 2006 AASLD. [source] Short-term administration of (-)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic miceLIVER TRANSPLANTATION, Issue 3 2005Ryan N. Fiorini Hepatic steatosis increases the extent of cellular injury incurred during ischemia/reperfusion (I/R) injury. (-)-Epigallocatechin gallate (EGCG), the major flavonoid component of green tea (camellia sinensis) is a potent antioxidant that inhibits fatty acid synthase (FAS) in vitro. We investigated the effects of EGCG on hepatic steatosis and markers of cellular damage at baseline and after I/R injury in ob/ob mice. Animals were pretreated with 85 mg/kg EGCG via intraperitoneal (ip) injection for 2 days or oral consumption in the drinking water for 5 days before 15 minutes of warm ischemia and 24 hours of reperfusion. After EGCG administration, total baseline hepatic fat content decreased from baseline. Palmitic acid and linoleic acid levels also were reduced substantially in all ECGC-treated animals before I/R. Alanine aminotransferase (ALT) levels decreased in all EGCG-treated animals compared with control animals after I/R. Histologic analysis demonstrated an average decrease of 65% necrosis after EGCG administration. EGCG administration also increased resting hepatic energy stores as determined by an increase in cellular adenosine triphosphate (ATP) with a concomitant decrease in uncoupling protein 2 (UCP2) before I/R. Finally, there was an increased level of glutathione (GSH) in the EGCG-treated mice compared with the vehicle-treated mice both at baseline and after I/R. In conclusion, taken together, this study demonstrates that treatment with ECGC by either oral or ip administration, significantly protects the liver after I/R, possibly by reducing hepatic fat content, increasing hepatic energy status, and functioning as an antioxidant. (Liver Transpl 2005;11:298,308.) [source] Ischemic preconditioning and intermittent clamping improve murine hepatic microcirculation and Kupffer cell function after ischemic injuryLIVER TRANSPLANTATION, Issue 4 2004Katarína Vajdová The aim of this study was to evaluate whether the protective effect of intermittent clamping and ischemic preconditioning is related to an improved hepatic microcirculation after ischemia/reperfusion injury. Male C57BL/6 mice were subjected to 75 or 120 min of hepatic ischemia and 1 or 3 hours of reperfusion. The effects of continuous ischemia, intermittent clamping, and ischemic preconditioning before prolonged ischemia on sinusoidal perfusion, leukocyte-endothelial interactions, and Kupffer cell phagocytic activity were analyzed by intravital fluorescence microscopy. Kupffer cell activation was measured by tissue levels of tumor necrosis factor (TNF)-,, and the integrity of sinusoidal endothelial cells and Kupffer cells were evaluated by electron microscopy. Continuous ischemia resulted in decreased sinusoidal perfusion rate and phagocytic activity of Kupffer cell, increased leukocyte-endothelial interactions and TNF-, levels. Both protective strategies improved sinusoidal perfusion, leukocyte-endothelial interactions and phagocytic activity of Kupffer cells after 75-minutes of ischemia, and intermittent clamping also after 120 minutes ischemia. TNF-, release was significantly reduced and sinusoidal wall integrity was preserved by both protective procedures. In conclusion, both strategies are protective against ischemia/reperfusion injury by maintaining hepatic microcirculation and decreasing Kupffer cell activation for clinically relevant ischemic periods, and intermittent clamping appears superior for prolonged ischemia. (Liver Transpl 2004;10:520,528.) [source] Intrahepatic cholestasis after liver transplantationLIVER TRANSPLANTATION, Issue 10 2003Ziv Ben-Ari Cholestasis is a common sequela of liver transplantation. Although the majority of cases remain subclinical, severe cholestasis may be associated with irreversible liver damage, requiring retransplantation. Therefore, it is essential that clinicians be able to identify and treat the syndromes associated with cholestasis. In this review, we consider causes of intrahepatic cholestasis. These may be categorized by time of occurrence, namely, within 6 months of liver transplantation (early) and thereafter (late), although there may be an overlap in their causes. The causes of intrahepatic cholestasis include ischemia/reperfusion injury, bacterial infection, acute cellular rejection, cytomegalovirus infection, small-for-size graft, drugs for hepatotoxicity, intrahepatic biliary strictures, chronic rejection, hepatic artery thrombosis, ABO blood group incompatibility, and recurrent disease. The mechanisms of cholestasis in each category and the clinical presentation, diagnosis, treatment, and outcome are discussed in detail. [source] The Physiology of Endothelial Xanthine Oxidase: From Urate Catabolism to Reperfusion Injury to Inflammatory Signal TransductionMICROCIRCULATION, Issue 3 2002AVEDIS MENESHIAN ABSTRACT Xanthine oxidoreductase (XOR) is a ubiquitous metalloflavoprotein that appears in two interconvertible yet functionally distinct forms: xanthine dehydrogenase (XD), which is constitutively expressed in vivo; and xanthine oxidase (XO), which is generated by the posttranslational modification of XD, either through the reversible, incremental thiol oxidation of sulfhydryl residues on XD or the irreversible proteolytic cleavage of a segment of XD, which occurs at low oxygen tension and in the presence of several proinflammatory mediators. Functionally, both XD and XO catalyze the oxidation of purines to urate. However, whereas XD requires NAD+ as an electron acceptor for these redox reactions, thereby generating the stable product NADH, XO is unable to use NAD+ as an electron acceptor, requiring instead the reduction of molecular oxygen for this purine oxidation and generating the highly reactive superoxide free radical. Nearly 100 years of study has documented the physiologic role of XD in urate catabolism. However, the rapid, posttranslational conversion of XD to the oxidantgenerating form XO provides a possible physiologic mechanism for rapid, posttranslational, oxidant-mediated signaling. XO-generated reactive oxygen species (ROS) have been implicated in various clinicopathologic entities, including ischemia/reperfusion injury and multisystem organ failure. More recently, the concept of physiologic signal transduction mediated by ROS has been proposed, and the possibility of XD to XO conversion, with subsequent ROS generation, serving as the trigger of the microvascular inflammatory response in vivo has been hypothesized. This review presents the evidence and basis for this hypothesis. [source] Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopyMICROSCOPY RESEARCH AND TECHNIQUE, Issue 10 2006Wanyun Ma Abstract Cytoskeleton fibers form an intricate three-dimensional network to provide structure and function to microvessel endothelial cells. During accommodation to blood flowing, stress fiber bundles become more prominent and align with the direction of blood flow. This network either mechanically resists the applied shear stress (lateral force) or, if deformed, is dynamically remodeled back to a preferred architecture. However, the detailed response of these stress fiber bundles to applied lateral force at submicrometer scales are as yet poorly understood. In our in vitro study, the tip, topography probe in lateral force microscopy of atomic force microscopy, acted as a tool for exerting quantitative vertical and lateral force on the filaments of the cytoskeleton. Moreover, the authors developed a formula to calculate the value of lateral force exerted on every point of the filaments. The results show that cytoskeleton fibers of healthy tight junctions in rat cerebral microvessel endothelial cells formed a cross-type network, and were reinforced and elongated in the direction of scanning under lateral force of 15,42 nN. Under peroxidation (H2O2 of 300 ,mol/L), the cytoskeleton remodeled at intercellular junctions, and changed over the meshwork structures into a dense bundle, that redistributed the stress. Once mechanical forces were exerted on an area, the cells shrank and lost morphologic tight junctions. It would be useful in our understanding of certain pathological processes, such as cerebral ischemia/reperfusion injury, which maybe caused by biomechanical forces and which are overlooked in current disease models. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source] |