Irradiation Exposure (irradiation + exposure)

Distribution by Scientific Domains


Selected Abstracts


DNA damage and repair measurements from cryopreserved lymphocytes without cell culture,A reproducible assay for intervention studies

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 7 2006
Jyh-Lurn Chang
Abstract Single-cell gel electrophoresis (the Comet assay) can be used to measure DNA damage and DNA repair capacity (DRC). However, to test DRC of cryopreserved lymphocytes, published methods include steps for cell culturing and phytohemagglutinin stimulation, which may limit use of this assay in intervention studies. We developed a modified Comet assay protocol that allows us to measure DRC from cryopreserved lymphocytes without these in vitro manipulations. Assay reproducibility was evaluated by performing the assay six times on different dates using six aliquots from one blood draw of one individual. The interindividual variation was assessed by performing the assay using one aliquot from six individuals. When ,-irradiation was used as the mutagen, intra-assay coefficients of variation (CVs.) for baseline DNA damage, damage after ,-irradiation exposure, and DRC,measured as tail moment,were 8, 31, and 10%, respectively. Interindividual CVs. were higher. When H2O2 was used as the mutagen, intra-assay CVs. for damage measurements were lower for a protocol modification that included damage and repair at 37°C (CVs. ranging from 8 to 35%) than for the more standard 4°C protocol. Analyzing moment arm,the average distance of DNA migration within the tail,yielded similar results. DNA repair was successfully detected in each experiment. Comparing freshly isolated lymphocytes to cryopreserved lymphocytes from the same individuals' blood draw indicated that DRC was highly correlated when determined using moment arm values. This modified protocol extends the use of the Comet assay to measuring DRC in intervention studies (e.g., dietary interventions) in that it assesses cellular response after cryopreservation without cell culture or other extensive manipulation. Environ. Mol. Mutagen., 2006. © 2006 Wiley-Liss, Inc. [source]


Photooxidation and Photoconductivity of Polyferrocenylsilane Thin Films

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2003
Paul W. Cyr
Abstract Irradiation of thin films of poly(ferrocenylmethylphenylsilane) ([Fe(,5 -C5H4)2SiMePh]n) cast from chloroform solution with UV light leads to photooxidation of ferrocene centers in the polymer main chain. The extent of the polymer oxidation can be controlled in the range ca. 0,5% by the duration of the irradiation exposure and by the concentration of chloroform. The photooxidized polyferrocenylsilane material is conductive, with an increased conductivity of greater than three orders of magnitude relative to the unoxidized material. In addition, the photooxidized polymers have been found to be photoconductive. The photooxidation process can be reversed by means of chemical reduction using hydrazine or decamethylferrocene, leading to the regeneration of the neutral polymers. However, substantial molecular weight decline was detected during the photooxidation/reduction process, presumably as a result of chain cleavage reactions induced by the anionic or radical chlorinated photoproducts. Methylation of the cyclopentadienyl rings of the ferrocene moiety in the polymer was found to lead to materials which are significantly more stable. Time trace of the current at constant applied voltage of 100 V for a PFS film upon illumination. The ON and OFF states were created by using a mechanical shutter. [source]


Unusual High Exposure to Ultraviolet-C Radiation

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2006
Andrea Trevisan
ABSTRACT ?1 UV radiation is known to cause acute and chronic eye and skin damage. The present case report describes a 90 min accidental exposure to UV-C radiation of 26 medical school students. Germicidal lamps were lit due to a malfunctioning of the timer system. Several hours after irradiation exposure, all subjects reported the onset of ocular symptoms, subsequently diagnosed as photokeratitis, and skin damage to the face, scalp and neck. While the ocular symptoms lasted 2,4 days, the sunburn-like condition produced significant erythema followed by deep skin exfoliation. The irradiation was calculated to be approximately 700 mJ cm,2 absorbed energy, whereas the actual radiation emitted by the lamps was 0.14 mW cm,2 (the radiometric measurements confirmed these calculi, because the effective irradiance measured from the height of the autopsy table to about 1 m under the UV-C lamp varied from 0.05 to 0.25 mW cm,2) but, more likely, the effective irradiance, according to skin phototype and symptoms, was between 50 and 100 mJ cm,2. The ocular and skin effects produced by such a high irradiation (largely higher than that accepted by the American Conference of Governmental Industrial Hygienists [ACGIH] threshold limit values [TLVs]) appeared reversible in a relatively short time. [source]


Implant stability during osseointegration in irradiated and non-irradiated minipig alveolar bone: an experimental study

CLINICAL ORAL IMPLANTS RESEARCH, Issue 2 2008
Henk W. D. Verdonck
Abstract: Objectives: Primary implant stability is related to local bone density. After insertion of an implant, implant stability is subject to changes due to bone remodeling. In patients who have undergone radiotherapy in the head and neck region, implant stability is impaired because irradiation reduces bone vitality. The current study was designed to monitor and test implant stability immediately after implant placement and during osseointegration in irradiated and non-irradiated minipig alveolar bone. Materials and methods: All maxillary and mandibular premolars and molars of six adult Göttingen minipigs were extracted. The maxilla and mandible of three minipigs received three irradiation exposures at a total dose of 24 Gy. After irradiation, five initial implant holes were drilled in the residual alveolar ridge of each edentulous site. In order to assess bone vascularity, laser Doppler flowmetry recordings were carried out in the initial holes. A total of 120 implants were placed in the six minipigs. Subsequently, and at 8, 16, and 24 weeks after implant placement, implant stability was recorded by resonance frequency analysis (RFA). RFA values were expressed as an implant stability quotient (ISQ). Results: ISQ values recorded immediately after implant placement showed no differences between irradiated and non-irradiated minipigs. Repeated measurements at the four recording moments showed a decrease of ISQ values in all minipigs, being more pronounced in irradiated bone, when compared with non-irradiated bone. The results at the third and fourth recording moments showed a stabilization or even a slight increase of ISQ values. Conclusions: The results document the negative effect of irradiation on bone vascularity and hence on implant stability. [source]