Iron Release (iron + release)

Distribution by Scientific Domains


Selected Abstracts


Electrochemically Induced Iron Release of Adsorbed Horse Spleen Ferritin: Quantitation of Iron Using Long Optical Path Length Thin-Layer Spectroelectrochemistry

ELECTROANALYSIS, Issue 23 2007

Abstract In this work, long optical path length thin-layer electrochemical cell was constructed using indium-tin oxide on glass as the electrode material. Iron release from ferritin adsorbed on the electrode was induced by applying a negative potential sweep in the presence of 1,10-phenanthroline. The usefulness of spectroelectrochemistry as a means of determining the quantity of iron released from an adsorbed layer of ferritin is demonstrated. [source]


GRAPE SEED PROANTHOCYANIDIN EXTRACT CHELATES IRON AND ATTENUATES THE TOXIC EFFECTS OF 6-HYDROXYDOPAMINE: IMPLICATIONS FOR PARKINSON'S DISEASE

JOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2010
TZU-HUA WU
ABSTRACT Proanthocyanidins are potent antioxidants associated with protection against diseases. We tested the reducing capacity, iron chelating activity, and anti-auto-oxidation ability of grape seed proanthocyanidin extract (GSPE). The mechanisms underlying GSPE attenuation of oxidative processes induced by 6-hydroxydopamine (6-OHDA), a neurotoxin used to induce Parkinson's disease, were investigated in cell-based systems. At high concentrations, GSPE (50 µg/µL) was a mild pro-oxidant in a Fenton-type reaction. GSPE (300 µg/mL) was as potent as 30 µM deferoxamine in its iron-chelating capacity, and as efficient as 5 mM ascorbic acid in delaying 6-OHDA auto-oxidation. In PC-12 cell cultures, 100 and 300 µg/mL GSPE significantly protected (P < 0.05) cells from 6-OHDA-induced (400 µM) toxicity. GSPE-induced cytoprotection is enhanced by a nitric oxide synthase inhibitor (NOSI), implying that the cytoprotective effect of GSPE does not require NOS activation. In conclusion, the iron-chelating activity of GSPE minimizes its pro-oxidant activity and delays 6-OHDA auto-oxidation to provide cytoprotection. PRACTICAL APPLICATIONS Parkinson's disease is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons. The recognized pharmacological strategies to prevent or treat Parkinson's disease include the minimization of oxidative stress, iron release and excitotoxicity resulting from excess nitric oxide formation. One of the best ways to delay or prevent the onset of the disease is to improve the biological antioxidant status by providing additional radical scavengers that are not pro-oxidants. The pro-oxidant activity, such as that of the antioxidant ascorbic acid, enhances radical cycling under certain conditions, and therefore may be detrimental. Grape seed proanthocyanidin extracts (GSPEs) are used as a dietary supplement in food products in several countries. Our current report provides evidence that GSPE has limited pro-oxidant activity, presumably because of its iron-chelating abilities, and protects cells from neurotoxic insults. GSPE may be effective as a dietary supplement for prophylactic use against the progressive neurodegeneration seen in Parkinson's disease. [source]


Pentoxifylline improves haemoglobin and interleukin-6 levels in chronic kidney disease

NEPHROLOGY, Issue 3 2010
PAOLO FERRARI
ABSTRACT Aim: To assess whether pentoxifylline improves anaemia of chronic kidney disease (CKD) via suppression of interleukin-6 (IL-6) and improved iron mobilization. Background: CKD patients may have elevated IL-6 and tumour necrosis factor alpha levels. These cytokines can increase hepcidin production, which in turn reduces iron release from macrophages resulting in reduced availability of iron for erythropoiesis. In experimental models, pentoxifylline was shown to reduce IL-6 expression. Methods: We studied 14 patients with stages 4,5 CKD (glomerular filtration rate <30mL/min per 1.73 m2) due to non-inflammatory renal diseases. None of the patients had received immunosuppressive or erythropoietin-stimulating agents or parenteral iron. Patients had weekly blood tests for iron studies and cytokines during a control run-in period of 3 weeks and during 4 weeks of pentoxifylline treatment. Results: Ten patients (eGFR 23 ± 6 mL/min) completed the study. At the end of the run-in period average haemoglobin was 111 ± 5 g/L, ferritin 92 ± 26 µg/L, transferrin saturation 15 ± 3% and circulating IL-6 10.6 ± 3.8 pg/mL. Tumour necrosis factor alpha values were below threshold for detection. Treatment with pentoxifylline reduced circulating IL-6 (6.6 ± 1.6 pg/mL, P < 0.01), increased transferrin saturation (20 ± 5%, P < 0.003) and decreased serum ferritin (81 ± 25 µg/L, P = NS). Haemoglobin increased after the second week of pentoxifylline, reaching 123 ± 6 g/L by week 4 (P < 0.001). Conclusions: Pentoxifylline reduces circulating IL-6 and improves haemoglobin in non-inflammatory moderate to severe CKD. These changes are associated with changes in circulating transferrin saturation and ferritin, suggesting improved iron release. It is hypothesized that pentoxifylline improves iron disposition possibly through modulation of hepcidin. [source]


Involvement of Iron (Ferric) Reduction in the Iron Absorption Mechanism of a Trivalent Iron-Protein Complex (Iron Protein Succinylate

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2000
Kishor B. Raja
Iron protein succinylate is a non-toxic therapeutic iron compound. We set out to characterise the structure of this compound and investigate the importance of digestion and intestinal reduction in determining absorption of the compound. The structure of the compound was investigated by variable temperature Mössbauer spectroscopy, molecular size determinations and kinetics of iron release by chelators. Intestinal uptake was determined with radioactive compound force fed to mice. Reduction of the compound was determined by in vitro incubation with intestinal fragments. The compound was found to contain only ferric iron, present as small particles including sizes below 10 nm. The iron was released rapidly to chelators. Digestion with trypsin reduced the molecular size of the compound. Intestinal absorption of the compound was inhibited by a ferrous chelator (ferrozine), indicating that reduction to ferrous iron may be important for absorption. The native compound was a poor substrate for duodenal reduction activity, but digestion with pepsin, followed by pancreatin, released soluble iron complexes with an increased reduction rate. We conclude that iron protein succinylate is absorbed by a mechanism involving digestion to release soluble, available ferric species which may be reduced at the mucosal surface to provide ferrous iron for membrane transport into enterocytes. [source]


Effects of radio frequency magnetic fields on iron release from cage proteins

BIOELECTROMAGNETICS, Issue 5 2009
Oscar Céspedes
Abstract Ferritin, the iron cage protein, contains a superparamagnetic ferrihydrite nanoparticle formed from the oxidation and absorption of Fe2+ ions. This nanoparticle increases its internal energy when exposed to alternating magnetic fields due to magnetization lag. The energy is then dissipated to the surrounding proteic cage, affecting its functioning. In this article we show that the rates of iron chelation with ferrozine, an optical marker, are reduced by up to a factor of 3 in proteins previously exposed to radio frequency magnetic fields of 1 MHz and 30 µT for several hours. The effect is non-thermal and depends on the frequency-amplitude product of the magnetic field. Bioelectromagnetics 30:336,342, 2009. © 2009 Wiley-Liss, Inc. [source]


Identification of possible kinetically significant anion-binding sites in human serum transferrin using molecular modeling strategies

BIOPOLYMERS, Issue 2 2004
Elizabeth Ambrose Amin
Abstract Certain anions have been shown experimentally to influence the rate of iron release from human serum transferrin (HST), implying the existence of one or more allosteric kinetically significant anion- binding (KISAB) sites on or near the surface of the protein. A rank-ordered selection of potential HST KISAB sites has been obtained using a novel three-stage molecular modeling strategy. The crystal structure of HST (1A8E.pdb) was first subjected to a heuristic analysis, in which positively charged and hydrogen-bonding residues on or near the surface of the protein were identified. In this stage, a preliminary electrostatic potential map was also calculated, yielding six preliminary sites. Next, energy-grid calculations were conducted in order to identify anion,protein interaction energy minima, which resulted in the inclusion of three additional sites. Finally, three anions already shown experimentally to demonstrate varied effects on HST iron-release kinetics were placed at each potential site; molecular dynamics and molecular mechanics calculations were performed in order to elucidate the hydrogen-bonding environment around each anion of the protein as well as to calculate anion,protein-binding energies. © 2003 Wiley Periodicals, Inc. Biopolymers 73: 205,215, 2004 [source]