Iron Homeostasis (iron + homeostasi)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Iron homeostasis: new players, newer insights

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2008
Eunice S. Edison
Abstract Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans. [source]


The Legionella pneumophila Dps homolog is regulated by iron and involved in multiple stress tolerance

JOURNAL OF BASIC MICROBIOLOGY, Issue S1 2009
Ming-jia Yu
Abstract Iron homeostasis is essential to almost all organisms. In this study, we identified the putative homolog of the iron-storage protein-encoding gene, dpsL, in the intracellular pathogen Legionella pneumophila and demonstrated its expression under iron-limited conditions and its responses to multiple stresses. Quantitative real-time PCR analysis indicated that the expression of dpsL was enhanced under iron limitation regardless of the growth phase. Compared with the wild-type cells, the cells devoid of dpsL were heat and H2O2 -sensitive. In contrast to the dps mutants of other bacteria, the growth of the dpsL mutant in an iron-deprived medium was delayed but finally reached the same cell density as wild-type cells during the stationary phase of growth. The finding that the dpsL mutant is salt resistant suggested the involvement of DpsL in virulence. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2010
Lily Ting
Summary The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms. [source]


New insights into the regulation of iron homeostasis

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2006
R. Deicher
Abstract Hepcidin evolves as a potent hepatocyte-derived regulator of the body's iron distribution piloting the flow of iron via, and directly binding, to the cellular iron exporter ferroportin. The hepcidin-ferroportin axis dominates the iron egress from all cellular compartments that are critical to iron homeostasis, namely placental syncytiotrophoblasts, duodenal enterocytes, hepatocytes and macrophages of the reticuloendothelial system. The gene that encodes hepcidin expression (HAMP) is subject to regulation by proinflammatory cytokines, such as IL-6 and IL-1; excessive hepcidin production explains the relative deficiency of iron during inflammatory states, eventually resulting in the anaemia of inflammation. The haemochromatosis genes HFE (the human leukocyte antigen-related gene), TfR2 (the transferrin receptor-2 gene) and HJV (the haemojuvelin gene) potentially facilitate the transcription of HAMP. Disruption of each of the four genes leads to a diminished hepatic release of hepcidin consistent with both a dominant role of hepcidin in hereditary haemochromatosis and an upstream regulatory role of HFE, TfR2 and HJV on HAMP expression. The engineered generation of hepcidin agonists, mimetics or antagonists could largely broaden current therapeutic strategies to redirect the flow of iron. [source]


Iron homeostasis: new players, newer insights

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2008
Eunice S. Edison
Abstract Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans. [source]


Hepcidin , central regulator of iron metabolism

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 1 2007
Valeriu Atanasiu
Abstract The knowledge about mammalian iron metabolism has advanced dramatically over the past decades. Studies of genetics, biochemistry and molecular biology allowed us the identification and characterization of many of the molecules involved in regulation of iron homeostasis. Important progresses were made after the discovery in 2000 of a small peptide , hepcidin , that has been proved to play a central role in orchestration on iron metabolism also providing a link between iron metabolism and inflammation and innate immunity. Hepcidin directly interacts with ferroportin (FPN), the only known mammalian iron exporter, which is expressed by enterocytes, macrophages and hepatocytes. The direct hepcidin,FPN interaction allows an adaptative response from the body in situations that alter normal iron homeostasis (hypoxia, anemia, iron deficiency, iron overload, and inflammation). [source]


Human platelets express hemochromatosis protein (HFE) and transferrin receptor 2

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 4 2003
Jokke Hannuksela
Abstract: Objectives: While body iron status may influence platelets, little information is available about platelet expression of proteins regulating iron homeostasis. HFE, the protein defective in hereditary hemochromatosis, and transferrin receptor 2 (TfR2) are two novel protein candidates that could be involved in mechanisms of iron transport across the platelet plasma membrane. Methods: The expression and localization of HFE, TfR1 and TfR2 proteins in human platelets were examined using Western blotting and immunocytochemistry. Results: Human platelets expressed HFE and TfR2, whereas no signal for TfR1 was found. The positive reactions for HFE and TfR2 were mainly confined to the platelet plasma membrane. Conclusions: Expression of HFE and TfR2 proteins in human platelets may indicate that the mutations in the corresponding genes could influence platelet count, size and/or activation. The presence of TfR2 and absence of TfR1 suggests that HFE may serve a different function in platelets compared with the other HFE-positive cell types, e.g. enterocytes, macrophages and syncytiotrophoblasts. [source]


Nramp1 -functionality increases iNOS expression via repression of IL-10 formation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008
Gernot Fritsche
Abstract In mice, resistance to certain intracellular microbes depends on the expression of a late phagosomal protein termed natural-resistance associated macrophage protein 1 (Nramp1, Slc11a1). Nramp1- functionality is associated with alterations of cellular iron homeostasis and a sustained pro-inflammatory immune response, including the formation of the antimicrobial effector molecule NO. To investigate the underlying mechanism we used RAW-264.7 murine macrophage cells stably transfected with a functional Nramp1 allele (RAW-37) or Nramp1 non-functional controls (RAW-21). We found that the production of and signalling by the anti-inflammatory cytokine IL-10 was significantly enhanced in macrophages lacking functional Nramp1. Upon infection of macrophages with Salmonella typhimurium pathogen survival was significantly better in RAW-21 than in RAW-37, which inversely correlated to NO and TNF-, formation. Addition of a neutralising anti-IL-10 antibody to RAW-21 cells led to a significantly reduced survival of S. typhimurium within these cells and enhanced formation of NO and TNF-, reaching levels comparable to that observed in cells bearing functional Nramp1. Oppositely, supplementation of iron to RAW-21 cells further increased IL-10 formation. Thus, Nramp1 mediates effective host defence in part via suppression of excessive IL-10 production which may relate to Nramp1- mediated reduction of cellular iron pools, thus strengthening antimicrobial effector mechanisms. [source]


Definition of the residues required for the interaction between glycine-extended gastrin and transferrin in vitro

FEBS JOURNAL, Issue 17 2009
Suzana Kovac
Transferrin is the main iron transport protein found in the circulation, and the level of transferrin saturation in the blood is an important indicator of iron status. The peptides amidated gastrin(17) (Gamide) and glycine-extended gastrin(17) (Ggly) are well known for their roles in controlling acid secretion and as growth factors in the gastrointestinal tract. Several lines of evidence, including the facts that transferrin binds gastrin, that gastrins bind ferric ions, and that the level of expression of gastrins positively correlates with transferrin saturation, suggest the possible involvement of the transferrin,gastrin interaction in iron homeostasis. In the present work, the interaction between gastrins and transferrin has been characterized by surface plasmon resonance and covalent crosslinking. First, an interaction between iron-free apo-transferrin and Gamide or Ggly was observed. The fact that no interaction was observed in the presence of the chelator EDTA suggested that the gastrin,ferric ion complex was the interacting species. Moreover, removal of ferric ions with EDTA reduced the stability of the complex between apo-transferrin and gastrins, and no interaction was observed between Gamide or Ggly and diferric transferrin. Second, some or all of glutamates at positions 8,10 of the Ggly molecule, together with the C-terminal domain, were necessary for the interaction with apo-transferrin. Third, monoferric transferrin mutants incapable of binding iron in either the N-terminal or C-terminal lobe still bound Ggly. These findings are consistent with the hypothesis that gastrin peptides bind to nonligand residues within the open cleft in each lobe of transferrin and are involved in iron loading of transferrin in vivo. Structured digital abstract ,,MINT-7212832, MINT-7212849: Apo-transferrin (uniprotkb:P02787) and Gamide (uniprotkb:P01350) bind (MI:0407) by surface plasmon resonance (MI:0107) ,,MINT-7212881, MINT-7212909: Ggly (uniprotkb:P01350) and Apo-transferrin (uniprotkb:P02787) bind (MI:0407) by cross-linking studies (MI:0030) ,,MINT-7212864: Apo-transferrin (uniprotkb:P02787) and Ggly (uniprotkb:P01350) bind (MI:0407) by competition binding (MI:0405) [source]


Iron regulatory protein-independent regulation of ferritin synthesis by nitrogen monoxide

FEBS JOURNAL, Issue 16 2006
Marc Mikhael
The discovery of iron-responsive elements (IREs), along with the identification of iron regulatory proteins (IRP1, IRP2), has provided a molecular basis for our current understanding of the remarkable post-transcriptional regulation of intracellular iron homeostasis. In iron-depleted conditions, IRPs bind to IREs present in the 5,-UTR of ferritin mRNA and the 3,-UTR of transferrin receptor (TfR) mRNA. Such binding blocks the translation of ferritin, the iron storage protein, and stabilizes TfR mRNA, whereas the opposite scenario develops when iron in the intracellular transit pool is plentiful. Nitrogen monoxide (commonly designated nitric oxide; NO), a gaseous molecule involved in numerous functions, is known to affect cellular iron metabolism via the IRP/IRE system. We previously demonstrated that the oxidized form of NO, NO+, causes IRP2 degradation that is associated with an increase in ferritin synthesis [Kim, S & Ponka, P (2002) Proc Natl Acad Sci USA99, 12214,12219]. Here we report that sodium nitroprusside (SNP), an NO+ donor, causes a dramatic and rapid increase in ferritin synthesis that initially occurs without changes in the RNA-binding activities of IRPs. Moreover, we demonstrate that the translational efficiency of ferritin mRNA is significantly higher in cells treated with SNP compared with those incubated with ferric ammonium citrate, an iron donor. Importantly, we also provide definitive evidence that the iron moiety of SNP is not responsible for such changes. These results indicate that SNP-mediated increase in ferritin synthesis is, in part, due to an IRP-independent and NO+ -dependent post-transcriptional, regulatory mechanism. [source]


KNQ1, a Kluyveromyces lactis gene encoding a transmembrane protein, may be involved in iron homeostasis

FEMS YEAST RESEARCH, Issue 5 2007
Emmanuela Marchi
Abstract The original purpose of the experiments described in this article was to identify, in the biotechnologically important yeast Kluyveromyces lactis, gene(s) that are potentially involved in oxidative protein folding within the endoplasmic reticulum (ER), which often represents a bottleneck for heterologous protein production. Because treatment with the membrane-permeable reducing agent dithiothreitol inhibits disulfide bond formation and mimics the reducing effect that the normal transit of folding proteins has in the ER environment, the strategy was to search for genes that conferred higher levels of resistance to dithiothreitol when present in multiple copies. We identified a gene (KNQ1) encoding a drug efflux permease for several toxic compounds that in multiple copies conferred increased dithiothreitol resistance. However, the KNQ1 product is not involved in the excretion of dithiothreitol or in recombinant protein secretion. We generated a knq1 null mutant, and showed that both overexpression and deletion of the KNQ1 gene resulted in increased resistance to dithiothreitol. KNQ1 amplification and deletion resulted in enhanced transcription of iron transport genes, suggesting, for the membrane-associated protein Knq1p, a new, unexpected role in iron homeostasis on which dithiothreitol tolerance may depend. [source]


Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity

GLIA, Issue 10 2008
Kryslaine O. Lopes
Abstract Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study, we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease (AD) human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration, particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects (age range 34,97 years) examined, microglial cells immunoreactive for ferritin were found to constitute a subpopulation of the larger microglial pool labeled with an antibody for HLA-DR antigens. The majority of these ferritin-positive microglia exhibited aberrant morphological (dystrophic) changes in the aged and particularly in the AD brain. No spatial correlation was found between ferritin-positive dystrophic microglia and senile plaques in AD tissues. Analysis of a secondary set of human postmortem brain tissues with a wide range of postmortem intervals (PMI, average 10.94 ± 5.69 h) showed that the occurrence of microglial dystrophy was independent of PMI and consequently not a product of tissue autolysis. Collectively, these results suggest that microglial involvement in iron storage and metabolism contributes to their degeneration, possibly through increased exposure of the cells to oxidative stress. We conclude that ferritin immunohistochemistry may be a useful method for detecting degenerating microglia in the human brain. © 2008 Wiley-Liss, Inc. [source]


Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis?

JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
Donna W. Lee
Abstract The contribution of iron dysregulation to the etiology of a variety of neuronal diseases comes as no surprise given its necessity in numerous general cellular and neuron-specific functions, its abundance, and its highly reactive nature. Homeostatic mechanisms such as the iron regulatory protein and hypoxia-inducible factor pathways are firmly evolutionarily set in place to prevent ,free' iron from participating in chemical Fenton and Haber-Weiss reactions which can result in subsequent generation of toxic hydroxyl radicals. However, given the multiple layers of complexity in cellular iron regulation, disruption of any number of genetic and environmental components can disturb the delicate balance between the various molecular players involved in maintaining an appropriate metabolic iron homeostasis. In this review, we will primarily focus on: (i) the impact of aging and gender on iron dysfunction as these are important criteria in the determination of iron-related disorders such as Parkinson's disease (PD), (ii) how iron mismanagement via disruption of cellular entry and exit pathways may contribute to these disorders, and (iii) how the availability of non-invasive measurement of brain iron may aid in PD diagnosis. [source]


Brain iron pathways and their relevance to Parkinson's disease

JOURNAL OF NEUROCHEMISTRY, Issue 2 2001
D Berg
A central role of iron in the pathogenesis of Parkinson's disease (PD), due to its increase in substantia nigra pars compacta dopaminergic neurons and reactive microglia and its capacity to enhance production of toxic reactive oxygen radicals, has been discussed for many years. Recent transcranial ultrasound findings and the observation of the ability of iron to induce aggregation and toxicity of ,-synuclein have reinforced the critical role of iron in the pathogenesis of nigrostriatal injury. Presently the mechanisms involved in the disturbances of iron metabolism in PD remain obscure. In this review we summarize evidence from recent studies suggesting disturbances of iron metabolism in PD at possibly different levels including iron uptake, storage, intracellular metabolism, release and post-transcriptional control. Moreover we outline that the interaction of iron with other molecules, especially ,-synuclein, may contribute to the process of neurodegeneration. Because many neurodegenerative diseases show increased accumulation of iron at the site of neurodegeneration, it is believed that maintenance of cellular iron homeostasis is crucial for the viability of neurons. [source]


Effects of Alcohol Consumption on Iron Metabolism in Mice with Hemochromatosis Mutations

ALCOHOLISM, Issue 1 2007
Jonathan M. Flanagan
Background: Alcoholic liver disease is associated with increased hepatic iron accumulation. The liver-derived peptide hepcidin is the central regulator of iron homeostasis and recent animal studies have demonstrated that exposure to alcohol reduces hepcidin expression. This down-regulation of hepcidin in vivo implies that disturbed iron sensing may contribute to the hepatosiderosis seen in alcoholic liver disease. Alcohol intake is also a major factor in expression of the hemochromatosis phenotype in patients homozygous for the C282Y mutation of the HFE gene. Methods: To assess the effect of alcohol in mice with iron overload, alcohol was administered to mice with disrupted Hfe and IL-6 genes and Tfr2 mutant mice and their respective 129x1/SvJ, C57BL/6J, and AKR/J wild-type congenic strains. Iron absorption, serum iron levels, and hepcidin expression levels were then measured in these mice compared with water-treated control mice. Results: Alcohol was shown to have a strain-specific effect in 129x1/SvJ mice, with treated 129x1/SvJ mice showing a significant increase in iron absorption, serum iron levels, and a corresponding decrease in hepcidin expression. C57BL/6J and AKR/J strain mice showed no effect from alcohol treatment. 129x1/SvJ mice heterozygous or homozygous for the Hfe knockout had a diminished response to alcohol. All 3 strains were shown to have high blood alcohol levels. Conclusions: The effect of alcohol on iron homeostasis is dependent on the genetic background in mice. In an alcohol-susceptible strain, mutation of the Hfe gene diminished the response of the measured iron indices to alcohol treatment. This indicates that either maximal suppression of hepcidin levels had already occurred as a result of the Hfe mutation or that Hfe was a component of the pathway utilized by EtOH in suppressing hepcidin production and increasing iron absorption. [source]


The transcriptomics of life-history trade-offs in whitefish species pairs (Coregonus sp.)

MOLECULAR ECOLOGY, Issue 7 2008
J. ST-CYR
Abstract Despite the progress achieved in elucidating the ecological mechanisms of adaptive radiation, there has been little focus on documenting the extent of adaptive differentiation in physiological functions during this process. Moreover, a thorough understanding of the genomic basis underlying phenotypic adaptive divergence is still in its infancy. One important evolutionary process for which causal genetic mechanisms are largely unknown pertains to life-history trade-offs. We analysed patterns of gene transcription in liver tissue of sympatric dwarf and normal whitefish from two natural lakes, as well as from populations reared in controlled environments, using a 16 006-gene cDNA microarray in order to: (i) document the extent of physiological adaptive divergence between sympatric dwarf and normal species pairs, and (ii) explore the molecular mechanisms of differential life history trade-offs between growth and survival potentially involved in their adaptive divergence. In the two natural lakes, 6.45% of significantly transcribed genes showed regulation either in parallel fashion (2.39%) or in different directions (4.06%). Among genes showing parallelism in regulation patterns, we observed a higher proportion of over-expressed genes in dwarf relative to normal whitefish (70.6%). Patterns observed in controlled conditions were also generally congruent with those observed in natural populations. Dwarf whitefish consistently showed significant over-expression of genes potentially associated with survival through enhanced activity (energy metabolism, iron homeostasis, lipid metabolism, detoxification), whereas more genes associated with growth (protein synthesis, cell cycle, cell growth) were generally down-regulated in dwarf relative to normal whitefish. Overall, parallelism in patterns of gene transcription, as well as patterns of interindividual variation across controlled and natural environments, provide strong indirect evidence for the role of selection in the evolution of differential regulation of genes involving a vast array of potentially adaptive physiological processes between dwarf and normal whitefish. Our results also provide a first mechanistic, genomic basis for the observed trade-off in life-history traits distinguishing dwarf and normal whitefish species pairs, wherein enhanced survival via more active swimming, necessary for increased foraging and predator avoidance, engages energetic costs that translate into slower growth rate and reduced fecundity in dwarf relative to normal whitefish. [source]


Mechanisms of iron loading and toxicity

AMERICAN JOURNAL OF HEMATOLOGY, Issue S12 2007
Gregory J. Anderson
Normal iron homeostasis is a finely balanced system that reflects iron absorption, loss and utilization. The body has no mechanism for the active excretion of iron, so body iron levels are controlled at the point of absorption in the small intestine. Disturbances in this equilibrium, such as those leading to enhanced absorption, can have significant clinical consequences. Continued excessive iron uptake is followed by iron deposition in various tissues, ultimately leading to tissue damage, and possibly end-organ failure. In this review, current concepts in normal iron homeostasis, and iron loading are explained. The clinical consequences as well as the differences between primary and secondary iron loading are also reviewed, and some future research priorities are discussed. Am. J. Hematol., 2007. © 2007 Wiley-Liss, Inc. [source]


Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway

THE PLANT JOURNAL, Issue 2 2008
Mathilde Séguéla
Summary Plants display a number of biochemical and developmental responses to low iron availability in order to increase iron uptake from the soil. The ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. In Arabidopsis, expression of IRT1 and FRO2 is tightly controlled to maintain iron homeostasis, and involves local and long-distance signals, as well as transcriptional and post-transcriptional events. FIT encodes a putative basic helix-loop-helix (bHLH) transcription factor that regulates iron uptake responses in Arabidopsis. Here, we uncover a new regulation of the root iron uptake genes. We show that IRT1, FRO2 and FIT are repressed by the exogenous addition of cytokinins (CKs), and that this repression acts at the level of transcript accumulation, and depends on the AHK3 and CRE1 CK receptors. The CKs and iron-deficiency signals act through distinct pathways to regulate the soil iron uptake genes, as (i) CK repression is independent of the iron status, (ii) IRT1 and FRO2 downregulation is unchanged in a fit loss-of-function mutant, indicating that FIT does not mediate CK repression, and (iii) the iron-regulated genes AtNRAMP3 and AtNRAMP4 are not downregulated by CKs. We show that root growth-inhibitory conditions, such as abiotic stresses (mannitol, NaCl) and hormonal treatments (auxin, abscissic acid), repress the iron starvation response genes. We propose that CKs control the root iron uptake machinery through a root growth dependent pathway in order to adapt nutrient uptake to the demand of the plant. [source]


Lipooligosaccharide-independent alteration of cellular homeostasis in Neisseria meningitidis -infected epithelial cells

CELLULAR MICROBIOLOGY, Issue 6 2005
Robert A. Bonnah
Summary Neisseria meningitidis (MC) is an important cause of meningitis and septic shock. Primary loose attachment of MC to host epithelial cells is mediated by type IV pili. Lipooligosaccharide (LOS), opacity (Opa) proteins and glycolipid adhesins facilitate subsequent tight attachment. MC infection causes numerous changes in host epithelial cell homeostasis. These include cortical plaque formation, increased expression of proinflammatory cytokines and alterations in host iron homeostasis. Using both biochemical and genetic approaches, we examined the role of LOS in mediating these events. We first examined specific cellular iron homeostasis changes that occur following addition of purified MC LOS to epithelial cells. Using an MC mutant that completely lacks LOS (MC lps tbp), we examined pili-mediated attachment and cortical plaque formation in human endocervical epithelial cells (A431). We also tested whether the lack of LOS alters cellular homeostasis, including changes in the levels of host stress response factors and proinflammatory cytokines. MC lps tbp elicited the formation of cortical plaques in A431 cells. However, the plaques were less pronounced than those formed by the MC parent. Surprisingly, the proinflammatory cytokine TNF, was upregulated during infection in MC lps tbp -infected cells. Furthermore, alterations in iron homeostasis, including lower transferrin receptor 1 (TfR-1) levels, altered TfR-1 trafficking, an ,iron-starvation' gene expression profile and low iron regulatory protein (IRP) binding activity are independent of LOS. Our results demonstrate that LOS is partially involved in both the attachment to host cells and formation of cortical plaques. However, TNF, induction and changes in iron homeostasis observed in MC-infected epithelial cells are independent of LOS. [source]


Functional studies of frataxin

ACTA PAEDIATRICA, Issue 2004
G Isaya
Mitochondria generate adenosine triphosphate (ATP) but also dangerous reactive oxygen species (ROS). One-electron reduction of dioxygen in the early stages of the electron transport chain yields a superoxide radical that is detoxified by mitochondrial superoxide dismutase to give hydrogen peroxide. The hydroxyl radical is derived from decomposition of hydrogen peroxide via the Fenton reaction, catalyzed by Fe2+ ions. Mitochondria require a constant supply of Fe2+ for heme and iron-sulfur cluster biosyntheses and therefore are particularly susceptible to ROS attack. Two main antioxidant defenses are known in mitochondria: enzymes that catalytically remove ROS, e.g. superoxide dismutase and glutathione peroxidase, and low molecular weight agents that scavenge ROS, including coenzyme Q, glutathione, and vitamins E and C. An effective defensive system, however, should also involve means to control the availability of pro-oxidants such as Fe2+ ions. There is increasing evidence that this function may be carried out by the mitochondrial protein frataxin. Frataxin deficiency is the primary cause of Friedreich's ataxia (FRDA), an autosomal recessive degenerative disease. Frataxin is a highly conserved mitochondrial protein that plays a critical role in iron homeostasis. Respiratory deficits, abnormal cellular iron distribution and increased oxidative damage are associated with frataxin defects in yeast and mouse models of FRDA. The mechanism by which frataxin regulates iron metabolism is unknown. The yeast frataxin homologue (mYfhlp) is activated by Fe(II) in the presence of oxygen and assembles stepwise into a 48-subunit multimer (,48) that sequesters <2000 atoms of iron in a ferrihydrite mineral core. Assembly of mYfhlp is driven by two sequential iron oxidation reactions: a fast ferroxidase reaction catalyzed by mYfh1p induces the first assembly step (,,3), followed by a slower autoxidation reaction that promotes the assembly of higher order oligomers yielding ,48. Depending on the ionic environment, stepwise assembly is associated with the sequestration of 50,75 Fe(II)/subunit. This Fe(II) is initially loosely bound to mYfh1p and can be readily mobilized by chelators or made available to the mitochondrial enzyme ferrochelatase to synthesize heme. However, as iron oxidation and mineralization proceed, Fe(III) becomes progressively inaccessible and a stable iron-protein complex is produced. In conclusion, by coupling iron oxidation with stepwise assembly, frataxin can successively function as an iron chaperon or an iron store. Reduced iron availability and solubility and increased oxidative damage may therefore explain the pathogenesis of FRDA. [source]