Iron Chelating Activities (iron + chelating_activity)

Distribution by Scientific Domains


Selected Abstracts


Oak leaf extract as topical antioxidant: Free radical scavenging and iron chelating activities and in vivo skin irritation potential

BIOFACTORS, Issue 4 2008
Isabel F. Almeida
Abstract The topical application of antioxidants may be beneficial for the protection of the skin against UV damage. An extract of Quercus robur leaves was prepared and evaluated considering its putative application as topical antioxidant. The solvent and extractive method selection was monitored by 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity and polyphenols extraction (measured by the Folin Ciocalteu assay). Iron chelating activity and the phenolic composition (HPLC/DAD) were assessed on the extract obtained under optimized conditions. Skin irritation potential was investigated by performing an in vivo patch test in 19 volunteers. The extraction solvent which resulted in the highest activity was ethanol:water (4:6) and thus it was selected for further preparation of this extract. The IC50a for the iron chelation and DPPH scavenging assays were 153.8 ± 26.3 ,g.mL,1 and 7.53 ± 0.71 ,g.mL,1 (mean ± SD), respectively. The total phenolic content was found to be 346.3 ± 6.7 mg gallic acid equivalents (GAE)/g extract (mean ± SD). Three phenolic compounds were identified in the extract namely: ellagic acid, rutin and hyperoside. The major identified component was ellagic acid. The patch test carried out showed that the extract can be regarded as safe for topical application. [source]


Combined therapy of silymarin and desferrioxamine in patients with ,-thalassemia major: a randomized double-blind clinical trial

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2009
Marjan Gharagozloo
Abstract Silymarin, a flavonolignan complex isolated from Silybum marianum, has a strong antioxidant, hepatoprotective, and iron chelating activities. The present study was designed to investigate the therapeutic activity of orally administered silymarin in patients with thalassemia major under conventional iron chelation therapy. A 3-month randomized, double-blind, clinical trial was conducted in 59 ,-thalassemia major patients in two well-matched groups. Patients were randomized to receive a silymarin tablet (140 mg) three times a day plus conventional desferrioxamine therapy. The second group received the same therapy but a placebo tablet instead of silymarin. Clinical laboratory tests were assessed at the beginning and the end of the trial, except for serum ferritin level that was assessed at the middle of the trial as well. Results of this study revealed that the combined therapy was well tolerated and more effective than desferrioxamine in reducing serum ferritin level. Significant improvement in liver alkaline phosphatase and glutathione levels of red blood cells was also observed in silymarin-treated ,-thalassemia patients. However, no significant difference in serum ferritin levels was detected between silymarin and placebo groups after 1.5 and 3 months treatment, probably because of insufficient sample size to detect subtle changes in ferritin levels between groups. This is the first report showing the beneficial effects of silymarin in thalassemia patients and suggests that silymarin in combination with desferrioxamine can be safely and effectively used in the treatment of iron-loaded patients. [source]


Oak leaf extract as topical antioxidant: Free radical scavenging and iron chelating activities and in vivo skin irritation potential

BIOFACTORS, Issue 4 2008
Isabel F. Almeida
Abstract The topical application of antioxidants may be beneficial for the protection of the skin against UV damage. An extract of Quercus robur leaves was prepared and evaluated considering its putative application as topical antioxidant. The solvent and extractive method selection was monitored by 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity and polyphenols extraction (measured by the Folin Ciocalteu assay). Iron chelating activity and the phenolic composition (HPLC/DAD) were assessed on the extract obtained under optimized conditions. Skin irritation potential was investigated by performing an in vivo patch test in 19 volunteers. The extraction solvent which resulted in the highest activity was ethanol:water (4:6) and thus it was selected for further preparation of this extract. The IC50a for the iron chelation and DPPH scavenging assays were 153.8 ± 26.3 ,g.mL,1 and 7.53 ± 0.71 ,g.mL,1 (mean ± SD), respectively. The total phenolic content was found to be 346.3 ± 6.7 mg gallic acid equivalents (GAE)/g extract (mean ± SD). Three phenolic compounds were identified in the extract namely: ellagic acid, rutin and hyperoside. The major identified component was ellagic acid. The patch test carried out showed that the extract can be regarded as safe for topical application. [source]


GRAPE SEED PROANTHOCYANIDIN EXTRACT CHELATES IRON AND ATTENUATES THE TOXIC EFFECTS OF 6-HYDROXYDOPAMINE: IMPLICATIONS FOR PARKINSON'S DISEASE

JOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2010
TZU-HUA WU
ABSTRACT Proanthocyanidins are potent antioxidants associated with protection against diseases. We tested the reducing capacity, iron chelating activity, and anti-auto-oxidation ability of grape seed proanthocyanidin extract (GSPE). The mechanisms underlying GSPE attenuation of oxidative processes induced by 6-hydroxydopamine (6-OHDA), a neurotoxin used to induce Parkinson's disease, were investigated in cell-based systems. At high concentrations, GSPE (50 µg/µL) was a mild pro-oxidant in a Fenton-type reaction. GSPE (300 µg/mL) was as potent as 30 µM deferoxamine in its iron-chelating capacity, and as efficient as 5 mM ascorbic acid in delaying 6-OHDA auto-oxidation. In PC-12 cell cultures, 100 and 300 µg/mL GSPE significantly protected (P < 0.05) cells from 6-OHDA-induced (400 µM) toxicity. GSPE-induced cytoprotection is enhanced by a nitric oxide synthase inhibitor (NOSI), implying that the cytoprotective effect of GSPE does not require NOS activation. In conclusion, the iron-chelating activity of GSPE minimizes its pro-oxidant activity and delays 6-OHDA auto-oxidation to provide cytoprotection. PRACTICAL APPLICATIONS Parkinson's disease is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons. The recognized pharmacological strategies to prevent or treat Parkinson's disease include the minimization of oxidative stress, iron release and excitotoxicity resulting from excess nitric oxide formation. One of the best ways to delay or prevent the onset of the disease is to improve the biological antioxidant status by providing additional radical scavengers that are not pro-oxidants. The pro-oxidant activity, such as that of the antioxidant ascorbic acid, enhances radical cycling under certain conditions, and therefore may be detrimental. Grape seed proanthocyanidin extracts (GSPEs) are used as a dietary supplement in food products in several countries. Our current report provides evidence that GSPE has limited pro-oxidant activity, presumably because of its iron-chelating abilities, and protects cells from neurotoxic insults. GSPE may be effective as a dietary supplement for prophylactic use against the progressive neurodegeneration seen in Parkinson's disease. [source]


Antiparkinson drug , Mucuna pruriens shows antioxidant and metal chelating activity

PHYTOTHERAPY RESEARCH, Issue 1 2008
Muralikrishnan Dhanasekaran
Abstract Parkinson's disease is a neurodegenerative disorder for which no neurorestorative therapeutic treatment is currently available. Oxidative stress plays an important role in the pathophysiology of Parkinson's disease. The ancient Indian medical system, Ayurveda, traditionally uses Mucuna pruriens to treat Parkinson's disease. In our earlier studies, Mucuna pruriens has been shown to possess antiparkinson and neuroprotective effects in animal models of Parkinson's disease. The antioxidant activity of Mucuna pruriens was demonstrated by its ability to scavenge DPPH radicals, ABTS radicals and reactive oxygen species. Mucuna pruriens significantly inhibited the oxidation of lipids and deoxyribose sugar. Mucuna pruriens exhibited divalent iron chelating activity and did not show any genotoxic/mutagenic effect on the plasmid DNA. These results suggest that the neuroprotective and neurorestorative effect of Mucuna pruriens may be related to its antioxidant activity independent of the symptomatic effect. In addition, the drug appears to be therapeutically safe in the treatment of patients with Parkinson's disease. Copyright © 2007 John Wiley & Sons, Ltd. [source]