Invasive Plant Species (invasive + plant_species)

Distribution by Scientific Domains
Distribution within Life Sciences

Selected Abstracts

A PCA-based modelling technique for predicting environmental suitability for organisms from presence records

M. P. Robertson
We present a correlative modelling technique that uses locality records (associated with species presence) and a set of predictor variables to produce a statistically justifiable probability response surface for a target species. The probability response surface indicates the suitability of each grid cell in a map for the target species in terms of the suite of predictor variables. The technique constructs a hyperspace for the target species using principal component axes derived from a principal components analysis performed on a training dataset. The training dataset comprises the values of the predictor variables associated with the localities where the species has been recorded as present. The origin of this hyperspace is taken to characterize the centre of the niche of the organism. All the localities (grid-cells) in the map region are then fitted into this hyperspace using the values of the predictor variables at these localities (the prediction dataset). The Euclidean distance from any locality to the origin of the hyperspace gives a measure of the ,centrality' of that locality in the hyperspace. These distances are used to derive probability values for each grid cell in the map region. The modelling technique was applied to bioclimatic data to predict bioclimatic suitability for three alien invasive plant species (Lantana camara L., Ricinus communis L. and Solanum mauritianum Scop.) in South Africa, Lesotho and Swaziland. The models were tested against independent test records by calculating area under the curve (AUC) values of receiver operator characteristic (ROC) curves and kappa statistics. There was good agreement between the models and the independent test records. The pre-processing of climatic variable data to reduce the deleterious effects of multicollinearity, and the use of stopping rules to prevent overfitting of the models are important aspects of the modelling process. [source]

Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the northern Rocky Mountains

ECOGRAPHY, Issue 5 2005
Kurt O. Reinhart
Quantitative studies are necessary to determine whether invasive plant species displace natives and reduce local biodiversity, or if they increase local biodiversity. Here we describe the effects of invasion by Norway maple Acer platanoides on riparian plant communities and tree regeneration at two different scales (individual tree vs stand scales) in western Montana, USA, using both descriptive and experimental approaches. The three stands differed in community composition with the stand most dominated by A. platanoides invasion being more compositionally homogenous, and less species rich (,67%), species even (,40%), and diverse (,75%) than the two other stands. This sharp decrease in community richness and diversity of the highly invaded stand, relative to the other stands, corresponded with a 28-fold increase in A. platanoides seedlings and saplings. The dramatic difference between stand 1 vs 2 and 3 suggests that A. platanoides invasion is associated with a dramatic change in community composition and local loss of species diversity; however, other unaccounted for differences between stands may be the cause. These whole-stand correlations were corroborated by community patterns under individual A. platanoides trees in a stand with intermediate levels of patchy invasion. At the scale of individual A. platanoides canopies within a matrix of native trees, diversity and richness of species beneath solitary A. platanoides trees declined as the size of the trees increased. These decreases in native community properties corresponded with an increase in the density of A. platanoides seedlings. The effect of A. platanoides at the stand scale was more dramatic than at the individual canopy scale; however, at this smaller scale we only collected data from the stand with intermediate levels of invasion and not from the stand with high levels of invasion. Transplant experiments with tree seedlings demonstrated that A. platanoides seedlings performed better when grown beneath conspecific canopies than under natives, but Populus and Pinus seedlings performed better when grown beneath Populus canopies, the dominant native. Our results indicate that A. platanoides trees suppress most native species, including the regeneration of the natural canopy dominants, but facilitate conspecifics in their understories. [source]

Invasiveness in plant communities with feedbacks

Margaret J. Eppstein
Abstract The detrimental effects of invasive plant species on ecosystems are well documented. While much research has focused on discovering ecological influences associated with invasiveness, it remains unclear how these influences interact, causing some introduced exotic species to become invasive threats. Here we develop a framework that incorporates the influences of propagule pressure, frequency independent growth rates, feedback relationships, resource competition and spatial scale of interactions. Our results show that these ecological influences interact in complex ways, resulting in expected outcomes ranging from inability to establish, to naturalization, to conditional invasion dependent on quantity and spatial distribution of propagules, to unconditional takeover. We propose a way to predict the likelihood of these four possible outcomes, for a species recently introduced into a given target community. Such information could enable conservation biologists to craft strategies and target remediation efforts more efficiently and effectively in order to help maintain biodiversity in ecological communities. [source]

Genetic differences in growth of an invasive tree species

Evan Siemann
Invasive plants are often more vigorous in their introduced ranges than in their native ranges. This may reflect an innate superiority of plants from some habitats or an escape from their enemies. Another hypothesis proposes that invasive plants evolve increased competitive ability in their introduced range. We present the results of a 14-year common garden experiment with the Chinese Tallow Tree (Sapium sebiferum) from its native range (Asia), place of introduction to North America (Georgia) and areas colonized a century later (Louisiana and Texas). Invasive genotypes, especially those from recently colonized areas, were larger than native genotypes and more likely to produce seeds but had lower quality, poorly defended leaves. Our results demonstrate significant post-invasion genetic differences in an invasive plant species. Post-introduction adaptation by introduced plants may contribute to their invasive success and make it difficult to predict problem species. [source]

Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa

GLOBAL ECOLOGY, Issue 5 2008
David C. Le Maitre
ABSTRACT Aim, Models of the potential distributions of invading species have to deal with a number of issues. The key one is the high likelihood that the absence of an invading species in an area is a false absence because it may not have invaded that area yet, or that it may not have been detected. This paper develops an approach for screening pseudo-absences in a way that is logical and defensible. Innovation, The step-wise approach involves: (1) screening environmental variables to identify those most likely to indicate conditions where the species cannot invade; (2) identifying and selecting the most likely limiting variables; (3) using these to define the limits of its invasion potential; and (4) selecting points outside these limits as true absence records for input into species distribution models. This approach was adopted and used for the study of three prominent Hakea species in South Africa. Models with and without the false absence records were compared. Two rainfall variables and the mean minimum temperature of the coldest month were the strongest predictors of potential distributions. Models which excluded false absences predicted that more of the potential distribution would have a high invasion potential than those which included them. Main conclusions, The approach of applying a priori knowledge can be useful in refining the potential distribution of a species by excluding pseudo-absence records which are likely to be due to the species not having invaded an area yet or being undetected. The differences between the potential distributions predicted by the different models convey more information than making a single prediction, albeit a consensus model. The robustness of this approach depends strongly on an adequate knowledge of the ecology, invasion history and current distribution of that species. [source]

Barn Swallows Hirundo rustica disperse seeds of Rooikrans Acacia cyclops, an invasive alien plant in the Fynbos Biome

IBIS, Issue 3 2007
Rooikrans Acacia cyclops is an invasive plant species in the coastal region of South Africa, especially the Fynbos Biome. It is endemic to southwestern Australia. Seeds are bird-dispersed, mostly by frugivores and granivores. We report that at one locality in South Africa, Barn Swallows Hirundo rustica, normally regarded as obligate foragers of aerial arthropods, also consumed the seeds and associated arils of Rooikrans shrubs and trees. The seeds were voided and the arils digested. Three thousand Barn Swallows in the region where this was observed conceivably consumed and voided two million Rooikrans seeds during the 5-month non-breeding period. Barn Swallows are therefore dispersers of Rooikrans seeds. Many of the bird species known to consume Rooikrans seeds are territorial, so that seeds are not dispersed far beyond existing acacia stands. Barn Swallows cover large distances between feeding areas and roosts, and could therefore disperse seeds far from existing stands. This development adds urgency to the need to eradicate Rooikrans from the Fynbos Biome. [source]

Potential selection in native grass populations by exotic invasion

Abstract Ecological impacts of invasive plant species are well documented, but the genetic response of native species to invasive dominance has been often overlooked. Invasive plants can drastically alter site conditions where they reach dominance, potentially exerting novel selective pressures on persistent native plant populations. Do native plant populations in old exotic invasions show evidence of selection when compared to conspecific populations in adjacent, noninvaded areas? We employ amplified fragment length polymorphism (AFLP) analysis to screen a large number of loci from two native grass species (Hesperostipa comata (Trin. & Rupr.) Barkworth and Sporobolus airoides Torr.) that occur in old infestations of the invasive forb Acroptilon repens. We then compare observed locus by locus FST values with distributions of FST estimated from simulation models under expectation of neutrality. We also compare the proportion of loci possibly linked to selection and those not linked to selection which exhibit parallel trends in divergence between two community types (invaded, noninvaded). Few loci (H. comata, 2.6%; S. airoides, 8.7%) in the two native grasses may be linked to genes under the influence of selection. Also, loci linked to selection showed a greater portion of parallel trends in divergence than neutral loci. Genetic similarities between community types were less than genetic similarity within community types suggesting differentiation in response to community alteration. These results indicate that a small portion of scored AFLP loci may be linked to genes undergoing selection tied to community dominance by an invasive species. We propose that native plants in communities dominated by exotic invasives may be undergoing natural selection. [source]

DNA barcoding discriminates the noxious invasive plant species, floating pennywort (Hydrocotyle ranunculoides L.f.), from non-invasive relatives

Abstract Floating pennywort (Hydrocotyle ranunculoides L.f.), a member of the plant family Araliaceae originating from North America, is an example of an invasive aquatic species posing serious problems to the management of waterways outside of its original distribution area in Australia and Western Europe. As a consequence, its import was banned in the Netherlands. It can be difficult to distinguish H. ranunculoides from other species of the genus on a morphological basis. In this regard, DNA barcoding may become a good alternative once this could be performed on a routine basis. In this study, we show that it is possible to distinguish H. ranunculoides from a series of closely related congeners by using a single plastid DNA sequence, trnH-psbA. [source]

Microsatellite markers for the invasive plant species white sweetclover (Melilotus alba) and yellow sweetclover (Melilotus officinalis)

Abstract We describe specific primers that amplify nine microsatellite DNA loci from Melilotus alba and Melilotus officinalis, both invasive plant species (Fabaceae) throughout North America. Allelic diversity was slightly lower for M. alba than for M. officinalis, as was expected heterozygosity. For both species, heterozygote deficit was observed at several loci. Genotypic diversity was very high for both species; the 29 plant samples of each species all had different multilocus genotypes. These markers will be used to determine the origins of the sweetclover invasion in Alaska and to compare patterns of diversity between subarctic and lower latitude populations. [source]

Decomposition dynamics in mixed-species leaf litter

OIKOS, Issue 2 2004
Tracy B. Gartner
Literature on plant leaf litter decomposition is substantial, but only in recent years have potential interactions among leaves of different species during decomposition been examined. We review emerging research on patterns of mass loss, changes in nutrient concentration, and decomposer abundance and activity when leaves of different species are decaying in mixtures. Approximately 30 papers have been published that directly examine decomposition in leaf mixtures as well as in all component species decaying alone. From these litter-mix experiments, it is clear that decomposition patterns are not always predictable from single-species dynamics. (Characteristics of decomposition in litter-mixes that deviate from responses predicted from decomposition of single-species litters alone are designated "non-additive"; "additive" responses in mixes are predictable from component species decaying alone.) Non-additive patterns of mass loss were observed in 67% of tested mixtures; mass loss is often (though not always) increased when litters of different species are mixed. Observed mass loss in some mixtures is as much as 65% more extensive than expected from decomposition of single-species litter, but more often mass loss in mixtures exceeds expected decay by 20% or less. Nutrient transfer among leaves of different species is striking, with 76% of the mixtures showing non-additive dynamics of nutrient concentrations. Non-additive patterns in the abundance and activity of decomposers were observed in 55% and 65% of leaf mixes, respectively. We discuss some methodological details that likely contribute to conflicting results among mixed-litter studies to date. Enough information is available to begin formulating mechanistic hypotheses to explain patterns in litter-mix experiments. Emerging patterns in the mixed-litter decomposition literature have implications for relationships between biodiversity and ecosystem function (in this case, the function being decomposition), and for potential mechanisms through which invasive plant species could alter carbon and nutrient dynamics in ecosystems. [source]

Resilience of Native Plant Community Following Manual Control of Invasive Cinchona pubescens in Galápagos

Heinke Jäger
As invasive plant species are a major driver of change on oceanic islands, their control is an important challenge for restoration ecology. The post-control recovery of native vegetation is crucial for the treatments to be considered successful, but few studies have evaluated the effects of control measures on both target and non-target species. To investigate the efficiency of manual control of Cinchona pubescens and its impacts on the sub-tropical highland vegetation of Santa Cruz Island, Galápagos, vegetation was sampled before and up to two years after control was carried out in permanent sampling plots. Manual control significantly reduced Cinchona density. Due to regeneration from the seed or bud bank, follow-up control is required, however, for long-term success. Despite heavy disturbance from tree uprooting, herbaceous angiosperms were little affected by the control actions, whereas dominant fern species declined in cover initially. Most native, endemic, and other introduced species regained their pre-control levels of cover 2 years after control; some species even exceeded them. The total number of species significantly increased over the study period, as did species diversity. The native highland vegetation appeared to be resilient, recovering to a level probably more characteristic of the pre-invasion state without human intervention after Cinchona control. However, some introduced species seemed to have been facilitated by the control actions, namely Stachys agraria and Rubus niveus. Further monitoring is needed to confirm the long-term nature of vegetation change in the area. [source]

On a level field: the utility of studying native and non-native species in successional systems

Scott J. Meiners
Abstract Questions: How do successional systems contribute to our understanding of plant invasions? Why is a community-level approach important in understanding invasion? Do native and non-native plant species differ in their successional trajectories within communities? Location: Northeastern United States, in the Piedmont region of New Jersey. Previously farmed since the 1700s, ten fields were experimentally retired from agriculture beginning in 1958. Methods: Fifty years of permanent plot data were used to quantify the population demographics of the 84 most abundant species during succession. These measures were then used to compare native, non-native and non-native invasive species' population dynamics in succession. Results: Once basic life-history characteristics were accounted for, there were no differences in the population dynamics of native, non-native, and non-native invasive plant species. However, the species pool in this study was biased towards ruderal species, which largely constrained non-native species to early succession. Conclusion: Successional systems are crucial to our understanding of invasions as they constrain all species to the role of colonizer. By focusing on the whole community, rather than on individual problematic species, we found no systematic differences between native and non-native species. Thus, knowing simple life-history information about a species would be much more useful in setting management priorities than where the species originated. [source]

The naturalization to invasion transition: Are there introduction-history correlates of invasiveness in exotic plants of Australia?

Abstract Of the large number of exotic plant species that become naturalized in new geographic regions, only a subset make the transition to become invasive. Identifying the factors that underpin the transition from naturalization to invasion is important for our understanding of biological invasions. To determine introduction-history correlates of invasiveness among naturalized plant species of Australia, we compared geographic origin, reason for introduction, minimum residence time and growth form between naturalized non-invasive species and naturalized invasive plant species. We found that more invasive species than expected originated from South America and North America, while fewer invasive species than expected originated from Europe and Australasia. There was no significant difference between invasive and non-invasive species with respect to reason for introduction to Australia. However, invasive species were significantly more likely to have been resident in Australia for a longer period of time than non-invasive species. Residence times of invasive species were consistently and significantly higher than residence times of non-invasive species even when each continent of origin was considered separately. Furthermore, residence times for both invasive and non-invasive species varied significantly as a function of continent of origin, with species from South America having been introduced to Australia more recently on average than species from Europe, Australasia and North America. We also found that fewer invasive species than expected were herbs and more invasive species than expected were primarily climbers. Considered together, our results indicate a high propensity for invasiveness in Australia among exotic plant species from South America, given that they appear in general capable of more rapid shifts to invasiveness than aliens from other regions. Furthermore, our findings support an emerging global generality that introduction-history traits must be statistically controlled for in comparative studies exploring life-history and ecological correlates of invasion success. [source]

Gut passage effect of the introduced red-whiskered bulbul (Pycnonotus jocosus) on germination of invasive plant species in Mauritius

Abstract In Mauritius, many of the worst invasive plant species have fleshy fruits and rely on animals for dispersal. The introduced red-whiskered bulbul (Pycnonotus jocosus) feeds on many fleshy-fruited species, and often moves from invaded and degraded habitats into higher quality native forests, thus potentially acting as a mediator of continued plant invasion into these areas. Furthermore, gut passage may influence seed germination. To investigate this, we fed fleshy fruits of two invasive plant species, Ligustrum robustum and Clidemia hirta, to red-whiskered bulbuls. Gut passage times of seeds were recorded. Gut-passed seeds were sown and their germination rate and germination success compared with that of hand-cleaned seeds, as well as that of seeds in whole fruits. Gut passage and hand-cleaning had significant positive effects on germination of both species. Gut-passed seeds of both C. hirta and L. robustum germinated faster than hand-cleaned seeds. However, for L. robustum, this was only true when compared with hand-cleaned seeds with intact endocarp; when compared with hand-cleaned seeds without endocarp, there was no difference. For overall germination success, there was a positive effect of gut passage for C. hirta, but not for L. robustum. For both C. hirta and L. robustum, no seeds in intact fruits geminated, suggesting that removal of pulp is essential for germination. Our results suggest that, first, the initial invasion of native forests in Mauritius may not have happened so rapidly without efficient avian seed dispersers like the red-whiskered bulbul. Second, the bulbul is likely to be a major factor in the continued re-invasion of C. hirta and L. robustum into weeded and restored conservation management areas. [source]