Invasive Fish Species (invasive + fish_species)

Distribution by Scientific Domains

Selected Abstracts

Profiling invasive fish species: the importance of phylogeny and human use

Carles Alcaraz
ABSTRACT Understanding the ecological differences between native and invasive species is of considerable scientific and practical interest. We examined such differences between native and invasive inland fish species from the Iberian Peninsula in order to analyse the importance of phylogenetic correction and variability (in addition to central tendency). We collected 26 quantitative and qualitative variables on the ecology, life-history traits and human use of the 69 inland fish species of the Iberian Peninsula, including native, invasive and migratory species. The taxonomic distribution of invasive fish species deviated significantly from world freshwater richness and in contrast to native species, invasive fish belongs to only five taxonomic orders but to a wide spectrum of families not native to the Iberian Peninsula. Because the life-history traits were highly dependent on taxonomy, the results, with or without applying phylogenetic methods, differed and after accounting for phylogeny, invasive species displayed higher and wider latitude in general and a different reproductive season mainly among salmonids and cyprinids. Human use was also significantly different between native and invasive fish species and produced more variability in life-history traits of invasive species and uneven taxonomic distribution because of the high diversity of species introduced. We show that accounting for taxonomy and studying variability in addition to central tendency is important in the comparison of life-history traits between native and invasive species. [source]

Voracious invader or benign feline?

A review of the environmental biology of European catfish Silurus glanis in its native, introduced ranges
Abstract A popular species for food and sport, the European catfish (Silurus glanis) is well-studied in its native range, but little studied in its introduced range. Silurus glanis is the largest-bodied freshwater fish of Europe and is historically known to take a wide range of food items including human remains. As a result of its piscivorous diet, S. glanis is assumed to be an invasive fish species presenting a risk to native species and ecosystems. To assess the potential risks of S. glanis introductions, published and ,grey' literature on the species' environmental biology (but not aquaculture) was extensively reviewed. Silurus glanis appears well adapted to, and sufficiently robust for, translocation and introduction outside its native range. A nest-guarding species, S. glanis is long-lived, rather sedentary and produces relatively fewer eggs per body mass than many fish species. It appears to establish relatively easily, although more so in warmer (i.e. Mediterranean) than in northern countries (e.g. Belgium, UK). Telemetry data suggest that dispersal is linked to flooding/spates and human translation of the species. Potential impacts in its introduced European range include disease transmission, hybridization (in Greece with native endemic Aristotle's catfish [Silurus aristotelis]), predation on native species and possibly the modification of food web structure in some regions. However, S. glanis has also been reported (France, Spain, Turkmenistan) to prey intensively on other non-native species and in its native Germany to be a poor biomanipulation tool for top-down predation of zooplanktivorous fishes. As such, S. glanis is unlikely to exert trophic pressure on native fishes except in circumstances where other human impacts are already in force. In summary, virtually all aspects of the environmental biology of introduced S. glanis require further study to determine the potential risks of its introduction to novel environments. [source]

Carp (Cyprinus carpio) as a powerful invader in Australian waterways

John D. Koehn
Summary 1. The invasion of carp (Cyprinus carpio L.) in Australia illustrates how quickly an introduced fish species can spread and dominate fish communities. This species has become the most abundant large freshwater fish in south-east Australia, now distributed over more than 1 million km2. 2. Carp exhibit most of the traits predicted for a successful invasive fish species. In addition, degradation of aquatic environments in south-east Australia has given them a relative advantage over native species. 3. Derivation of relative measures of 13 species-specific attributes allowed a quantitative comparison between carp and abundant native fish species across five major Australian drainage divisions. In four of six geographical regions analysed, carp differed clearly from native species in their behaviour, resource use and population dynamics. 4. Climate matching was used to predict future range expansion of carp in Australia. All Australian surface waters appear to be climatically suitable for carp. 5. This assessment strongly reinforces the need for immediate management of carp in Australia to include targeted control of human-assisted dispersal, such as use of carp as bait by anglers, distribution to new locations by anglers and the use of the ,Koi' strain in the aquarium industry. 6. Given their historical spread, dispersal mechanisms and ecological requirements, the expansion of carp across most of the remainder of Australia is to be expected. [source]

On the occurrence of the Asiatic cyprinid Pseudorasbora parva in the Netherlands

B. J. A. Pollux
A large scale inventory along the Meuse River (the Netherlands), showed that floodplain lakes function as spawning, nursery and adult habitats, while the main river channel merely serves as a dispersal corridor for adult Pseudorasbora parva, one of the most successful invasive fish species that have colonized Europe. [source]