Invasion Potential (invasion + potential)

Distribution by Scientific Domains


Selected Abstracts


Environmental warming increases invasion potential of alpine lake communities by imported species

GLOBAL CHANGE BIOLOGY, Issue 11 2005
Angela M. Holzapfel
Abstract Global warming increasingly pressures species to show adaptive migratory responses. We hypothesized that warming increases invasion of alpine lakes by low-elevation montane zooplankton by suppressing native competitors and predators. This hypothesis was tested by conducting a two-factor experiment, consisting of a warming treatment (13 vs. 20°C) crossed with three invasion levels (alpine only, alpine+montane, montane only), in growth chambers over a 28-day period. Warming significantly reduced total consumer biomass owing to the decline of large alpine species, resulting in greater autotrophic abundance. Significant temperature-invasion interactions occurred as warming suppressed alpine zooplankton, while stimulating certain imported species. Herbivorous invaders suppressed functionally similar alpine species while larger native omnivores reduced invasion by smaller taxa. Warming did not affect total invader biomass because imported species thrived under ambient and warmed alpine conditions. Our findings suggest that the adaptability of remote alpine lake communities to global warming is limited by species dispersal from lower valleys, or possibly nearby warmer alpine ponds. [source]


Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa

GLOBAL ECOLOGY, Issue 5 2008
David C. Le Maitre
ABSTRACT Aim, Models of the potential distributions of invading species have to deal with a number of issues. The key one is the high likelihood that the absence of an invading species in an area is a false absence because it may not have invaded that area yet, or that it may not have been detected. This paper develops an approach for screening pseudo-absences in a way that is logical and defensible. Innovation, The step-wise approach involves: (1) screening environmental variables to identify those most likely to indicate conditions where the species cannot invade; (2) identifying and selecting the most likely limiting variables; (3) using these to define the limits of its invasion potential; and (4) selecting points outside these limits as true absence records for input into species distribution models. This approach was adopted and used for the study of three prominent Hakea species in South Africa. Models with and without the false absence records were compared. Two rainfall variables and the mean minimum temperature of the coldest month were the strongest predictors of potential distributions. Models which excluded false absences predicted that more of the potential distribution would have a high invasion potential than those which included them. Main conclusions, The approach of applying a priori knowledge can be useful in refining the potential distribution of a species by excluding pseudo-absence records which are likely to be due to the species not having invaded an area yet or being undetected. The differences between the potential distributions predicted by the different models convey more information than making a single prediction, albeit a consensus model. The robustness of this approach depends strongly on an adequate knowledge of the ecology, invasion history and current distribution of that species. [source]


Factors affecting the invasion success of Senecio inaequidens and S. pterophorus in Mediterranean plant communities

JOURNAL OF VEGETATION SCIENCE, Issue 2 2007
L. Caņo
Abstract Question: Plant invasions result from complex interactions between species traits, community characteristics and environmental variations. We examined the effect of these interactions on the invasion potential of two invasive Senecio species, S. inaequidens and S. pterophorus, across three Mediterranean plant communities in a natural park. Location: Catalonia, NE Spain. Methods: We carried out two series of experimental seedling transplantations, in the spring and fall of 2003, in grassland, shrubland and Quercus ilex forest. Competition with neighbouring plants and water availability were manipulated. We evaluated the survival, growth and reproduction with respect to each treatment combination. Results: Any habitat can be colonised if disturbance occurs. In the absence of disturbance, shrubland enhanced the survival of seedlings. Competition with resident vegetation dramatically reduced survival in grassland and forest when establishment occurred in the spring. However, establishment in the fall promoted invasion in grassland and shrubland, even in the undisturbed treatment. Grassland allowed the highest growth and reproductive performance of both species while forest was the most resistant habitat to invasion. S. inaequidens had a higher growth rate and a shorter pre-reproductive period than S. pterophorus. S. pterophorus produced more biomass and was more dependent on water availability than S. inaequidens. Conclusions: In the light of our results, we recommend surveying open shrublands and grasslands after periods of rainfall. Special attention should be paid to S. pterophorus, which is currently spreading. A preliminary assessment of the invasive-ness of this plant is given in this study. [source]


Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins

CELLULAR MICROBIOLOGY, Issue 10 2005
Christopher J. Bradley
Summary Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa+ and Opa, derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa+ capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa+ capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior infectious/inflammatory conditions carry a high risk of invasive meningococcal disease. [source]