Home About us Contact | |||
Introgression
Kinds of Introgression Terms modified by Introgression Selected AbstractsMULTILOCUS ANALYSES OF ADMIXTURE AND INTROGRESSION AMONG HYBRIDIZING HELICONIUS BUTTERFLIESEVOLUTION, Issue 6 2006Marcus R. Kronforst Abstract Introgressive hybridization is an important evolutionary process and new analytical methods provide substantial power to detect and quantify it. In this study we use variation in the frequency of 657 AFLP fragments and DNA sequence variation from 15 genes to measure the extent of admixture and the direction of interspecific gene flow among three Heliconius butterfly species that diverged recently as a result of natural selection for Müllerian mimicry, and which continue to hybridize. Bayesian clustering based on AFLP genotypes correctly delineated the three species and identified four H. cydno, three H. pachinus, and three H. melpomene individuals that were of mixed ancestry. Gene genealogies revealed substantial shared DNA sequence variation among all three species and coalescent simulations based on the Isolation with Migration (IM) model pointed to interspecific gene flow as its cause. The IM simulations further indicated that interspecific gene flow was significantly asymmetrical, with greater gene flow from H. pachinus into H. cydno (2Nm 5 4.326) than the reverse (2Nm 5 0.502), and unidirectional gene flow from H. cydno and H. pachinus into H. melpomene (2Nm 5 0.294 and 0.252, respectively). These asymmetries are in the directions expected based on the genetics of wing patterning and the probability that hybrids of various phenotypes will survive and reproduce in different mimetic environments. This empirical demonstration of extensive interspecific gene flow is in contrast to a previous study which found little evidence of gene flow between another pair of hybridizing Heliconius species, H. himera and H. erato, and it highlights the critical role of natural selection in maintaining species diversity. Furthermore, these results lend support to the hypotheses that phenotypic diversification in the genus Heliconius has been fueled by introgressive hybridization and that reinforcement has driven the evolution of assortative mate preferences. [source] LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNAEVOLUTION, Issue 4 2005Kai M. A. Chan Abstract Accurate phylogenies are crucial for understanding evolutionary processes, especially species diversification. It is commonly assumed that "good" species are sufficiently isolated genetically that gene genealogies represent accurate phylogenies. However, it is increasingly clear that good species may continue to exchange genetic material through hybridization (introgression). Many studies of closely related species reveal introgression of some genes without others, often with more rapid introgression of maternally inherited chloroplast or mitochondrial DNA (cpDNA, mtDNA). We seek a general explanation for this biased introgression using simple models of common reproductive isolating barriers (RIBs). We compare empirically informed models of prezygotic isolation (for pre- and postinsemination mechanisms of both female choice and male competition) with postzygotic isolation and demonstrate that rate of introgression depends critically upon type of RIB and mode of genetic inheritance (maternal versus biparental versus paternal). Our frequency-dependent prezygotic RIBs allow much more rapid introgression of biparentally and maternally inherited genes than do commonly modeled postzygotic RIBs (especially maternally inherited DNA). After considering the specific predictions in the context of empirical observations, we conclude that our model of prezygotic RIBs is a general explanation for biased introgression of maternally inherited genomic components. These findings suggest that we should use extreme caution when interpreting single gene genealogies as species phylogenies, especially for cpDNA and mtDNA. [source] DIFFERENTIAL PATTERNS OF INTROGRESSION ACROSS THE X CHROMOSOME IN A HYBRID ZONE BETWEEN TWO SPECIES OF HOUSE MICEEVOLUTION, Issue 9 2004Bret A. Payseur Abstract A complete understanding of the speciation process requires the identification of genomic regions and genes that confer reproductive barriers between species. Empirical and theoretical research has revealed two important patterns in the evolution of reproductive isolation in animals: isolation typically arises as a result of disrupted epistatic interactions between multiple loci and these disruptions map disproportionately to the X chromosome. These patterns suggest that a targeted examination of natural gene flow between closely related species at X-linked markers with known positions would provide insight into the genetic basis of speciation. We take advantage of the existence of genomic data and a well-documented European zone of hybridization between two species of house mice, Mus domesticus and M. musculus, to conduct such a survey. We evaluate patterns of introgression across the hybrid zone for 13 diagnostic X-linked loci with known chromosomal positions using a maximum likelihood model. Interlocus comparisons clearly identify one locus with reduced introgression across the center of the hybrid zone, pinpointing a candidate region for reproductive isolation. Results also reveal one locus with high frequencies of M. domesticus alleles in populations on the M. musculus side of the zone, suggesting the possibility that positive selection may act to drive the spread of alleles from one species on to the genomic background of the other species. Finally, cline width and cline center are strongly positively correlated across the X chromosome, indicating that gene flow of the X chromosome may be asymmetrical. This study highlights the utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice. [source] EVIDENCE FOR HISTORICAL INTROGRESSION ALONG A CONTACT ZONE BETWEEN TWO SPECIES OF CHAR (PISCES: SALMONIDAE) IN NORTHWESTERN NORTH AMERICAEVOLUTION, Issue 5 2002Z. Redenbach Abstract Phylogeographic analyses can yield valuable insights into the geographic and historical contexts of contact and hybridization between taxa. Two species of char (Salmonidae), Dolly Varden (Salvelinus malma) and bull trout (S. confluentus) have largely parapatric distributions in watersheds of northwestern North America. They are, however, sympatric in several localities and hybridization and some introgression occurs across a broad area of contact. We conducted a comparative phylogenetic analysis of Dolly Varden and bull trout to gain a historical perspective of hybridization between these species and to test for footprints of historical introgression. We resolved two major Dolly Varden mitochondrial DNA (mtDNA) clades (with 1.4,2.2% sequence divergence between haplotypes) that had different geographical distributions. Clade N is distributed across most of the range of Dolly Varden, from southern British Columbia through to the Kuril Islands in Asia. Clade S had a much more limited distribution, from Washington state, at the southern limit of the Dolly Varden range, to the middle of Vancouver Island. The distribution and inferred ages of the mtDNA clades suggested that Dolly Varden survived the Wisconsinan glaciation in a previously unsuspected refuge south of the ice sheet, and that Dolly Varden and bull trout were probably in continuous contact over most of the last 100,000 years. When bull trout were included in the phylogenetic analysis, however, the mtDNA of neither species was monophyletic: Clade S Dolly Varden clustered within the bull trout mtDNA clade. This pattern was discordant with two nuclear phylogenies produced (growth hormone 2 and rRNA internal transcribed sequence 1), in which Dolly Varden and bull trout were reciprocally monophyletic. This discordance between mtDNA- and nDNA-based phylogenies indicates that historical introgression of bull trout mtDNA into Dolly Varden occurred. Percent sequence divergence within these introgressed Dolly Varden (clade S) was 0.2,0.6%, implying that the introgression occurred prior to the most recent glaciation. Our analysis and other evidence of contact between divergent lineages in northwestern North America strongly suggests that the area may be the site of previously unsuspected suture zones of aquatic biotas. [source] GENETIC DIVERSITY AND INTROGRESSION IN TWO CULTIVATED SPECIES (PORPHYRA YEZOENSIS AND PORPHYRA TENERA) AND CLOSELY RELATED WILD SPECIES OF PORPHYRA (BANGIALES, RHODOPHYTA),JOURNAL OF PHYCOLOGY, Issue 2 2009Kyosuke Niwa We investigated the genetic variations of the samples that were tentatively identified as two cultivated Porphyra species (Porphyra yezoensis Ueda and Porphyra tenera Kjellm.) from various natural populations in Japan using molecular analyses of plastid and nuclear DNA. From PCR-RFLP analyses using nuclear internal transcribed spacer (ITS) rDNA and plastid RUBISCO spacer regions and phylogenetic analyses using plastid rbcL and nuclear ITS-1 rDNA sequences, our samples from natural populations of P. yezoensis and P. tenera showed remarkably higher genetic variations than found in strains that are currently used for cultivation. In addition, it is inferred that our samples contain four wild Porphyra species, and that three of the four species, containing Porphyra kinositae, are closely related to cultivated Porphyra species. Furthermore, our PCR-RFLP and molecular phylogenetic analyses using both the nuclear and plastid DNA demonstrated the occurrence of plastid introgression from P. yezoensis to P. tenera and suggested the possibility of plastid introgression from cultivated P. yezoensis to wild P. yezoensis. These results imply the importance of collecting and establishing more strains of cultivated Porphyra species and related wild species from natural populations as genetic resources for further improvement of cultivated Porphyra strains. [source] Introgression of Resistance to Powdery Mildew Conferred by Chromosome 2R by Crossing Wheat Nullisomic 2D with RyeJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 7 2006Diao-Guo An Abstract Using the nullisomic back-cross procedure, four wheat-rye chromosome substitution 2R (2D) lines with different agronomic performance, designated WR02-145-1, WR01-145-2, WR02-145-3, and WR02-145-4, were produced from a cross between 2D nullisomic wheat (Triticum aestivum L. cv. "Xiaoyan 6") and rye (Secale cereale L. cv. "German White"). The chromosomal constitution of 2n=42=21 in WR02-145 lines was confirmed by cytological and molecular cytogenetic methods. Using genomic in situ hybridization on root tip chromosome preparations, a pair of intact rye chromosomes was detected in the WR02-145 lines. PCR using chromosome-specific primers confirmed the presence of 2R chromosomes of rye in these wheat-rye lines, indicating that WR02-145 lines are disomic chromosome substitution lines 2R(2D). The WR02-145 lines are resistant to the powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates prevalent in northern China and may possess gene(s) for resistance to powdery mildew, which differ from the previously identified Pm7 gene located on chromosome 2RL. The newly developed "Xiaoyan 6"- "German White" 2R (2D) chromosome substitution lines are genetically stable, show desirable agronomic traits, and are expected to be useful in wheat improvement. (Managing editor: Li-Hui Zhao) [source] mtDNA perspective of chromosomal diversification and hybridization in Peters' tent-making bat (Uroderma bilobatum: Phyllostomidae)MOLECULAR ECOLOGY, Issue 11 2003Federico G. Hoffmann Abstract We compared sequence variation in the complete mitochondrial cytochrome -b gene with chromosomal and geographical variation for specimens of Peters' tent-making bat (Uroderma bilobatum). Three different chromosomal races have been described in this species: a 2n = 42 race from South America east of the Andes, a 2n = 44 from NW Central America and 2n = 38 from the rest of Central America and NW South America. The deepest nodes in the tree were found within the South American race (42 race), which is consistent with a longer history of this race. Average distance among races ranged from 2.5 to 2.9%, with the highest amount of intraracial variation found within the 2n = 42 race (1.7%), intermediate values within the 2n = 38 race (0.9%) and lowest within the 2n = 44 race (0.5%). Variation among chromosomal races accounted for over 55% of molecular variance, whereas variation among populations within races accounted for 6%. The 2n = 38 and 2n = 44 races hybridize in the coastal lowlands of Honduras, near the Gulf of Fonseca. Introgression between these two races is low (two introgressed individuals in 45 examined). Clinal variation across the hybrid zone for the cytochrome -b of U. bilobatum, is similar to clinal variation reported for chromosomes and isozymes of this species. Mismatch distribution analyses suggests that geographical isolation and karyological changes have interplayed in a synergistic fashion. Fixation of the alternative chromosomal rearrangements in geographical isolation and secondary contact is the most likely mechanism accounting for the hybrid zone between the 2n = 38 and 2n = 44 races. If a molecular clock is assumed, with rates ranging from 2.3 to 5.0% per million years, then isolation between these races occurred within the last million years, implying a relatively recent origin of the extant diversity in Uroderma bilobatum. None the less, the three chromosomal races probably represent three different biological species. [source] Plastid DNA variation in the Dactylorhiza incarnata/maculata polyploid complex and the origin of allotetraploid D. sphagnicola (Orchidaceae)MOLECULAR ECOLOGY, Issue 10 2003M. Hedrén Abstract To obtain further information on the polyploid dynamics of the the Dactylorhiza incarnata/maculata polyploid complex and the origin of the allotetraploid D. sphagnicola (Orchidaceae), plastid DNA variation was studied in 400 plants from from Sweden and elsewhere in Europe and Asia Minor by means of polymerase chain reaction,restriction fragment length polymorphisms (PCR-RFLPs) and sequencing. Allotetraploid taxa in Europe are known have evolved by multiple independent polyploidization events following hybridization between the same set of two distinct ancestral lineages. Most allotetraploids have inherited the plastid genome from parents similar to D. maculata sensu lato, which includes, e.g. the diploid D. fuchsii and the autotetraploid D. maculata sensu stricto. D. sphagnicola carries a separate plastid haplotype different from the one found in other allotetraploid taxa, which is in agreement with an independent origin from the parental lineages. Some of the remaining allotetraploids have local distributions and appear to be of postglacial origin, whereas still other allotetraploids may be of higher age, carrying plastid haplotypes that have not been encountered in present day representatives of the parental lineages. Introgression and hybridization between diploids and allotetraploids, and between different independently derived allotetraploids may further have contributed to genetic diversity at the tetraploid level. Overall, the Dactylorhiza polyploid complex illustrates how taxon diversity and genetic diversity may be replenished rapidly in a recently glaciated area. [source] Differential patterns of hybridization and introgression between the swallowtails Papilio machaon and P. hospiton from Sardinia and Corsica islands (Lepidoptera, Papilionidae)MOLECULAR ECOLOGY, Issue 6 2003R. Cianchi Abstract Proportions of hybridization and introgression between the swallowtails Papilio hospiton, endemic to Sardinia and Corsica, and the holarctic Papilio machaon, were characterized using nine fully diagnostic and two differentiated allozyme loci and a mitochondrial DNA marker. Very low frequencies of F1 hybrids were detected in both Sardinia (0,4%, average 1.4%) and Corsica (0,3%, average 0.5%), as well as of first generation backcrosses (B1). No F2 were observed, in agreement with the hybrid breakdown detected in laboratory crosses. In spite of this minimal current gene exchange, specimens carrying introgressed alleles were found in high proportions in P. machaon but in lower proportions in P. hospiton. Introgression apparently occurred through past hybridization and repeated backcrossing, as evidenced by hybrid index scores and Bayesian assignment tests. Levels of introgression were low (0,1%) at two sex-linked loci and mitochondrial DNA, limited (0.4,2%) at three autosomal loci coding for dimeric enzymes, and high (up to 43%) at four autosomal loci coding for monomeric enzymes. Accordingly, selective filters are acting against foreign alleles, with differential effectiveness depending on the loci involved. The low levels of introgression at sex-linked loci and mitochondrial DNA are in agreement with Haldane's rule and suggest that introgression in P. machaon proceeds mainly through males, owing to a lower fitness of hybrid females. Papilio machaon populations showed higher levels of introgression in Sardinia than in Corsica. The role of reinforcement in the present reproductive isolation between P. machaon and P. hospiton is examined, as well as the evolutionary effects of introgressive hybridization between the two species. [source] Introgression of a gene for delayed pigment gland morphogenesis from Gossypium bickii into upland cottonPLANT BREEDING, Issue 6 2005S. J. Zhu Abstract The presence of gossypol and its derivatives above the WHO/FAO standards (0.02,0.04%) in cotton seed oil and meal limits its usage as food and feed. To the contrary, the presence of pigment glands filled with gossypol and its derivatives helps to protect cotton plants from phytophageous pests. Thus a desirable cultivar would have glandless seeds on a glanded plant. This paper describes results on the successful introgression of this trait from Gossypium bickii into cultivated upland cotton. Five different tri-specific hybrids (ABH1, ABH2, ABH3, ABH4 and ABH5) were obtained by crossing the amphidiploid F1 (G. arboreum × G. bickii) with different gland genotypes of G. hirsutum as male parent. The hybrids were highly sterile, and their chromosome configuration at meiosis metaphase 1 (M1) in pollen mother cell (PMC) was 2n = 52 = 41.04 I + 4.54 II + 0.57 III + 0.04 IV. All five hybrids were similar in morphological characters, except for the gland expression and gossypol contents. The hybrid (ABH3) derived from genotype Gl2Gl2gl3gl3 of upland cotton (a single gene dominant line) had completely introgressed the target trait of G. bickii. While ABH1 and ABH2, which derived from recessive (gl2gl2gl3gl3) or dominant (GlGl) glandless upland cotton genotypes, had glandless seeds too, but the density and size of the glands on the plant were reduced significantly. [source] Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum): genetic mapping and identification of associated molecular markersPLANT PATHOLOGY, Issue 1 2006I. P. Armstead Crown rust (Puccinia coronata) resistance (CRres), which had been introgressed from meadow fescue (Festuca pratensis) into the Italian ryegrass (Lolium multiflorum) background, was genetically mapped with amplified fragment length polymorphism (AFLP) and sequence tagged site (STS) markers to a terminal segment of chromosome 5. Comparative mapping had previously shown that this region of the Lolium/Festuca genome has a degree of conserved genetic synteny with chromosomes 11 and 12 of rice. Sequences from rice chromosome 12 were used as templates for identifying further STS markers that cosegregated with CRres. The relative genomic positions of molecular markers associated with CRres in L. multiflorum, L. perenne, F. pratensis and oats is discussed, along with their relationships to physical positions on rice chromosomes C11 and C12. [source] Direction of movements in Hungarian Barn Owls (Tyto alba): gene flow and barriersDIVERSITY AND DISTRIBUTIONS, Issue 4 2003Róbert Mátics Abstract. An analysis of dispersal directions of the barn owl showed that all individuals immigrating to Hungary came from W-NW-N. It was shown that immigrating owls breed in Hungary. There is no prevailing direction in emigration from Hungary. The time of fledging does not influence the direction of movement and there is no difference between sexes concerning dispersal direction. The percentages of emigrating owls is greater than that of immigrating ones. These percentages did not differ in relation to most of the analysed countries (Germany, Italy, Switzerland, Poland and countries of the former Yugoslavia and Czechoslovakia) but it differed in relation to Austria. The degree and direction of introgression into and from the transition zone and the recent distribution of the phenotypes are discussed based on the comparative analysis of published European data. These suggest that the subspecies Tyto alba alba and Tyto alba guttata disappear by introgression, to form a phenotypically very variable species. [source] Host-related life history traits in interspecific hybrids of cactophilic DrosophilaENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2008E. M. Soto Abstract In the genus Drosophila (Diptera: Drosophilidae), interspecific hybridization is a rare phenomenon. However, recent evidence suggests a certain degree of introgression between the cactophilic siblings Drosophila buzzatii Patterson & Wheeler and Drosophila koepferae Fontdevila & Wasserman. In this article, we analyzed larval viability and developmental time of hybrids between males of D. buzzatii and females of D. koepferae, raised in media prepared with fermenting tissues of natural host plants that these species utilize in nature as breeding sites. In all cases, developmental time and larval viability in hybrids was not significantly different from parental lines and, depending on the cross, hybrids developed faster than both parental species or than the slowest species. When data of wing length were included in a discriminant function analysis, we observed that both species can be clearly differentiated, while hybrids fell in two categories, one intermediate between parental species and the other consisting of extreme phenotypes. Thus, our results point out that hybrid fitness, as measured by developmental time and viability, is not lower than in the parental species. [source] GENE FLOW AND SPECIES DELIMITATION: A CASE STUDY OF TWO PINE SPECIES WITH OVERLAPPING DISTRIBUTIONS IN SOUTHEAST CHINAEVOLUTION, Issue 8 2010Yong Feng Zhou Species delimitation detected by molecular markers is complicated by introgression and incomplete lineage sorting between species. Recent modeling suggests that fixed genetic differences between species are highly related to rates of intraspecific gene flow. However, it remains unclear whether such differences are due to high levels of intraspecific gene flow overriding the spread of introgressed alleles or favoring rapid lineage sorting between species. In pines, chloroplast (cp) and mitochondrial (mt) DNAs are normally paternally and maternally inherited, respectively, and thus their relative rates of intraspecific gene flow are expected to be high and low, respectively. In this study, we used two pine species with overlapping geographical distributions in southeast China, P. massoniana and P. hwangshanensis, as a model system to examine the association between organelle gene flow and variation within and between species. We found that cpDNA variation across these two pine species is more species specific than mtDNA variation and almost delimits taxonomic boundaries. The shared mt/cp DNA genetic variation between species shows no bias in regard to parapatric versus allopatric species' distributions. Our results therefore support the hypothesis that high intraspecific gene flow has accelerated cpDNA lineage sorting between these two pine species. [source] COMPARATIVE GENOMIC AND POPULATION GENETIC ANALYSES INDICATE HIGHLY POROUS GENOMES AND HIGH LEVELS OF GENE FLOW BETWEEN DIVERGENT HELIANTHUS SPECIESEVOLUTION, Issue 8 2009Nolan C. Kane While speciation can be found in the presence of gene flow, it is not clear what impact this gene flow has on genome- and range-wide patterns of differentiation. Here we examine gene flow across the entire range of the common sunflower, H. annuus, its historically allopatric sister species H. argophyllus and a more distantly related, sympatric relative H. petiolaris. Analysis of genotypes at 26 microsatellite loci in 1015 individuals from across the range of the three species showed substantial introgression between geographically proximal populations of H. annuus and H. petiolaris, limited introgression between H. annuus and H. argophyllus, and essentially no gene flow between the allopatric pair, H. argophyllus and H. petiolaris. Analysis of sequence divergence levels among the three species in 1420 orthologs identified from EST databases identified a subset of loci showing extremely low divergence between H. annuus and H. petiolaris and extremely high divergence between the sister species H. annuus and H. argophyllus, consistent with introgression between H. annuus and H. petiolaris at these loci. Thus, at many loci, the allopatric sister species are more genetically divergent than the more distantly related sympatric species, which have exchanged genes across much of the genome while remaining morphologically and ecologically distinct. [source] EFFECTS OF MIGRATION ON THE GENETIC COVARIANCE MATRIXEVOLUTION, Issue 10 2007Frédéric Guillaume In 1996, Schluter showed that the direction of morphological divergence of closely related species is biased toward the line of least genetic resistance, represented by gmax, the leading eigenvector of the matrix of genetic variance,covariance (the G -matrix). G is used to predict the direction of evolutionary change in natural populations. However, this usage requires that G is sufficiently constant over time to have enough predictive significance. Here, we explore the alternative explanation that G can evolve due to gene flow to conform to the direction of divergence between incipient species. We use computer simulations in a mainland,island migration model with stabilizing selection on two quantitative traits. We show that a high level of gene flow from a mainland population is required to significantly affect the orientation of the G -matrix in an island population. The changes caused by the introgression of the mainland alleles into the island population affect all aspects of the shape of G (size, eccentricity, and orientation) and lead to the alignment of gmax with the line of divergence between the two populations' phenotypic optima. Those changes decrease with increased correlation in mutational effects and with a correlated selection. Our results suggest that high migration rates, such as those often seen at the intraspecific level, will substantially affect the shape and orientation of G, whereas low migration (e.g., at the interspecific level) is unlikely to substantially affect the evolution of G. [source] CYTO-NUCLEAR EPISTASIS: TWO-LOCUS RANDOM GENETIC DRIFT IN HERMAPHRODITIC AND DIOECIOUS SPECIESEVOLUTION, Issue 4 2006Michael J. Wade Abstract We report the findings of our theoretical investigation of the effect of random genetic drift on the covariance of identity-by-descent (ibd) of nuclear and cytoplasmic genes. The covariance in ibd measures of the degree to which cyto-nuclear gene combinations are heritable, that is, transmitted together from parents to offspring. We show how the mating system affects the covariance of ibd, a potentially important aspect of host-pathogen or host-symbiont coevolution. The magnitude of this covariance influences the degree to which the evolution of apparently neutral cytoplasmic genes, often used in molecular phylogenetics, might be influenced by selection acting on unlinked nuclear genes. To the extent that cyto-nuclear gene combinations are inherited together, genomic conflict is mitigated and intergenomic transfer it facilitated, because genes in both organelle and nuclear genomes share the same evolutionary fate. The covariance of ibd also affects the rate at which cyto-nuclear epistatic variance is converted to additive variance necessary for a response to selection. We find that conversion is biased in species with separate sexes, so that the increment of additive variance added to the nuclear genome exceeds that added to the cytoplasmic genome. As a result, the host might have an adaptive advantage in a coevolutionary arms race with vertically (maternally) transmitted pathogens. Similarly, the nuclear genome could be a source of compensatory mutations for its organellar genomes, as occurs in cytoplasmic male sterility in some plant species. We also discuss the possibility that adaptive cytoplasmic elements, such as favorable mitochondrial mutations or endosymbionts (e.g., Wolbachia), have the potential to release heritable nuclear variation as they sweep through a host population, supporting the view that cytoplasmic introgression plays an important role in adaptation and speciation. [source] LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNAEVOLUTION, Issue 4 2005Kai M. A. Chan Abstract Accurate phylogenies are crucial for understanding evolutionary processes, especially species diversification. It is commonly assumed that "good" species are sufficiently isolated genetically that gene genealogies represent accurate phylogenies. However, it is increasingly clear that good species may continue to exchange genetic material through hybridization (introgression). Many studies of closely related species reveal introgression of some genes without others, often with more rapid introgression of maternally inherited chloroplast or mitochondrial DNA (cpDNA, mtDNA). We seek a general explanation for this biased introgression using simple models of common reproductive isolating barriers (RIBs). We compare empirically informed models of prezygotic isolation (for pre- and postinsemination mechanisms of both female choice and male competition) with postzygotic isolation and demonstrate that rate of introgression depends critically upon type of RIB and mode of genetic inheritance (maternal versus biparental versus paternal). Our frequency-dependent prezygotic RIBs allow much more rapid introgression of biparentally and maternally inherited genes than do commonly modeled postzygotic RIBs (especially maternally inherited DNA). After considering the specific predictions in the context of empirical observations, we conclude that our model of prezygotic RIBs is a general explanation for biased introgression of maternally inherited genomic components. These findings suggest that we should use extreme caution when interpreting single gene genealogies as species phylogenies, especially for cpDNA and mtDNA. [source] DIFFERENTIAL PATTERNS OF INTROGRESSION ACROSS THE X CHROMOSOME IN A HYBRID ZONE BETWEEN TWO SPECIES OF HOUSE MICEEVOLUTION, Issue 9 2004Bret A. Payseur Abstract A complete understanding of the speciation process requires the identification of genomic regions and genes that confer reproductive barriers between species. Empirical and theoretical research has revealed two important patterns in the evolution of reproductive isolation in animals: isolation typically arises as a result of disrupted epistatic interactions between multiple loci and these disruptions map disproportionately to the X chromosome. These patterns suggest that a targeted examination of natural gene flow between closely related species at X-linked markers with known positions would provide insight into the genetic basis of speciation. We take advantage of the existence of genomic data and a well-documented European zone of hybridization between two species of house mice, Mus domesticus and M. musculus, to conduct such a survey. We evaluate patterns of introgression across the hybrid zone for 13 diagnostic X-linked loci with known chromosomal positions using a maximum likelihood model. Interlocus comparisons clearly identify one locus with reduced introgression across the center of the hybrid zone, pinpointing a candidate region for reproductive isolation. Results also reveal one locus with high frequencies of M. domesticus alleles in populations on the M. musculus side of the zone, suggesting the possibility that positive selection may act to drive the spread of alleles from one species on to the genomic background of the other species. Finally, cline width and cline center are strongly positively correlated across the X chromosome, indicating that gene flow of the X chromosome may be asymmetrical. This study highlights the utility of natural populations of hybrids for mapping speciation genes and suggests that the middle of the X chromosome may be important for reproductive isolation between species of house mice. [source] ACCUMULATING DOBZHANSKY-MULLER INCOMPATIBILITIES: RECONCILING THEORY AND DATAEVOLUTION, Issue 6 2004John J. Welch Abstract Theoretical models of the accumulation of Dobzhansky-Muller incompatibilities (DMIs) are studied, and in particular, the framework introduced by Orr (1995) and a verbal model introduced by Kondrashov et al. (2002). These models embody very different assumptions about the relationship between the substitution process underlying evolutionary divergence and the formation of incompatibilities. These differences have implications for our ability to make inferences about the divergence from patterns in the relevant data. With this in mind, the models are investigated for their ability to account for three patterns evident in this data: (1) the asymmetrical nature of incompatibilities under reciprocal introgression; (2) the finding that multiple concurrent introgressions may be necessary for an incompatibility to form; and (3) the finding that the probability of obtaining an incompatibility by introgressing a single amino acid remains roughly constant over a wide range of genetic distances. None of the models available in the literature can account for all of the empirical patterns. However, modified versions of the models can do so. Ways of discriminating between the different models are then discussed. [source] GENETIC DISSECTION OF HYBRID INCOMPATIBILITIES BETWEEN DROSOPHILA SIMULANS AND D. MAURITIANA.: III.EVOLUTION, Issue 11 2003AND IMPLICATIONS FOR HALDANE, DEGREE OF DOMINANCE, HETEROGENEOUS ACCUMULATION OF HYBRID INCOMPATIBILITIES Abstract The genetic basis of Haldane,rule was investigated through estimating the accumulation of hybrid incompatibilities between Drosophila simulans and D. mauritiana by means of introgression. The accumulation of hybrid male sterility (HMS) is at least 10 times greater than that of hybrid female sterility (HFS) or hybrid lethality (HL). The degree of dominance for HMS and HL in a pure D. simulans background is estimated as 0.23,0.29 and 0.33,0.39, respectively; that for HL in an F1 background is unlikely to be very small. Evidence obtained here was used to test the Turelli-Orr model of Haldane's rule. Composite causes, especially, faster-male evolution and recessive hybrid incompatibilities, underlie Haldane's rule in heterogametic male taxa such as Drosophila (XY male and XX female). However, if faster-male evolution is driven by sexual selection, it contradicts Haldane's rule for sterility in hetero-gametic-female taxa such as Lepidoptera (ZW female and ZZ male). The hypothesis of a faster-heterogametic-sex evolution seems to fit the current data best. This hypothesis states that gametogenesis in the heterogametic sex, instead of in males per se, evolves much faster than in the homogametic sex, in part because of sex-ratio selection. This hypothesis not only explains Haldane's rule in a simple way, but also suggests that genomic conflicts play a major role in evolution and speciation. [source] MOLECULAR EVIDENCE FOR THE ORIGIN OF WORKERLESS SOCIAL PARASITES IN THE ANT GENUS POGONOMYRMEXEVOLUTION, Issue 10 2002Joel D. Parker Abstract., Speciation of two social parasites from their respective hosts is tested using a molecular phylogeny. Alignment of 711 DNA base pairs of mitochondrial cytochrome b gene was used to assess phylogenetic relationships of inquiline species to their hosts and to other members of the genus. We show that the inquiline social parasites of the North American seed harvester ants are monophyletic, descending from one of the known hosts (Pogonomyrmex barbatus) in the recent past and shifting hosts in a pattern similar to that observed in other Hymenopteran social parasites. In addition, the host populations unexpectedly were found to be polyphyletic. Populations of Pogonomyrmex rugosus from an area east of the Chiricahua Mountains in Southern Arizona belong to a mitochondrial clade separate from the more western clade of P. rugosus from the Sonoran and Chihuahuan Deserts. Evidence of mitochondrial DNA introgression between P. rugosus and P. barbatus was also observed. We conclude that Emery's rule does not strictly hold for this system, but that the hosts and parasites are very closely related, supporting a loose definition of Emery's rule. [source] THE AFRICANIZATION OF HONEYBEES (APIS MELLIFERA L.) OF THE YUCATAN: A STUDY OF A MASSIVE HYBRIDIZATION EVENT ACROSS TIMEEVOLUTION, Issue 7 2002Kylea E. Clarke Abstract Until recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses. We obtained reference populations from Europe, Africa, and South America and used these to provide baseline information for a microsatellite and mitochondrial analysis of the process of Africanization of the bees of the Yucatan Peninsula, Mexico. The genetic structure of the Yucatecan population has changed dramatically over time. The pre-Africanized Yucatecan population (1985) comprised bees that were most similar to samples from southeastern Europe and northern and western Europe. Three years after the arrival of Africanized bees (1989), substantial paternal gene flow had occurred from feral Africanized drones into the resident European population, but maternal gene flow from the invading Africanized population into the local population was negligible. However by 1998, there was a radical shift with both African nuclear alleles (65%) and African-derived mitochondria (61%) dominating the genomes of domestic colonies. We suggest that although European mitochondria may eventually be driven to extinction in the feral population, stable introgression of European nuclear alleles has occurred. [source] EVIDENCE FOR HISTORICAL INTROGRESSION ALONG A CONTACT ZONE BETWEEN TWO SPECIES OF CHAR (PISCES: SALMONIDAE) IN NORTHWESTERN NORTH AMERICAEVOLUTION, Issue 5 2002Z. Redenbach Abstract Phylogeographic analyses can yield valuable insights into the geographic and historical contexts of contact and hybridization between taxa. Two species of char (Salmonidae), Dolly Varden (Salvelinus malma) and bull trout (S. confluentus) have largely parapatric distributions in watersheds of northwestern North America. They are, however, sympatric in several localities and hybridization and some introgression occurs across a broad area of contact. We conducted a comparative phylogenetic analysis of Dolly Varden and bull trout to gain a historical perspective of hybridization between these species and to test for footprints of historical introgression. We resolved two major Dolly Varden mitochondrial DNA (mtDNA) clades (with 1.4,2.2% sequence divergence between haplotypes) that had different geographical distributions. Clade N is distributed across most of the range of Dolly Varden, from southern British Columbia through to the Kuril Islands in Asia. Clade S had a much more limited distribution, from Washington state, at the southern limit of the Dolly Varden range, to the middle of Vancouver Island. The distribution and inferred ages of the mtDNA clades suggested that Dolly Varden survived the Wisconsinan glaciation in a previously unsuspected refuge south of the ice sheet, and that Dolly Varden and bull trout were probably in continuous contact over most of the last 100,000 years. When bull trout were included in the phylogenetic analysis, however, the mtDNA of neither species was monophyletic: Clade S Dolly Varden clustered within the bull trout mtDNA clade. This pattern was discordant with two nuclear phylogenies produced (growth hormone 2 and rRNA internal transcribed sequence 1), in which Dolly Varden and bull trout were reciprocally monophyletic. This discordance between mtDNA- and nDNA-based phylogenies indicates that historical introgression of bull trout mtDNA into Dolly Varden occurred. Percent sequence divergence within these introgressed Dolly Varden (clade S) was 0.2,0.6%, implying that the introgression occurred prior to the most recent glaciation. Our analysis and other evidence of contact between divergent lineages in northwestern North America strongly suggests that the area may be the site of previously unsuspected suture zones of aquatic biotas. [source] FREQUENCY AND SPATIAL PATTERNING OF CLONAL REPRODUCTION IN LOUISIANA IRIS HYBRID POPULATIONSEVOLUTION, Issue 1 2000John M. Burke Abstract., The plant genera in which natural hybridization is most prevalent tend to be outcrossing perennials with some mechanism for clonal (i.e., asexual) reproduction. Although clonal reproduction in fertile, sexually reproducing hybrid populations could have important evolutionary consequences, little attention has been paid to quantifying this parameter in such populations. In the present study, we examined the frequency and spatial patterning of clonal reproduction in two Louisiana iris hybrid populations. Allozyme analysis of both populations revealed relatively high levels of genotypic diversity. However, a considerable amount of clonality was apparent. Nearly half of all genets (47%) in one population and more than half (61%) in the other had multiple ramets. Furthermore, both populations exhibited relatively high levels of genetic structuring, a pattern that resulted from the aggregation of clonal ramets. The occurrence of clonal reproduction in hybrid populations could not only facilitate introgression through an increase in the number of flowering ramets per genet and/or the survivorship of early generation hybrids, but might also influence the mating system of such populations. Any potential increase in the selfing rate due to cross-pollination among ramets of the same genet may, in turn, increase the likelihood of homoploid hybrid speciation. [source] Evidence for canalization of Distal-less function in the leg of Drosophila melanogasterEVOLUTION AND DEVELOPMENT, Issue 2 2005Ian Dworkin Summary A considerable body of theory pertaining to the evolution of canalization has emerged recently, yet there have been few empirical investigations of their predictions. To address this, patterns of canalization and trait correlation were investigated under the individual and joint effects of the introgression of a loss-of-function allele of the Distal-less gene and high-temperature stress on a panel of iso-female lines. Variation was examined for number of sex comb teeth and the length of the basi-tarsus on the pro-thoracic leg of male Drosophila melanogaster. I demonstrate that whereas there is evidence for trait canalization, there is no evidence to support the hypothesis of the evolution of genetic canalization as a response to microenvironmental canalization. Furthermore, I demonstrate that although there are genetic correlations between these traits, there is no association between their measures of canalization. I discuss the prospects of the evolutionary lability of the Distal-less gene within the context of changes in genetic variation and covariation. [source] A metapopulation model for the introgression from genetically modified plants into their wild relativesEVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 2 2009Patrick G. Meirmans Abstract Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative. [source] Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto speciesFEMS YEAST RESEARCH, Issue 4 2002Miguel de Barros Lopes Abstract Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380T, the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely. [source] A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio)FRESHWATER BIOLOGY, Issue 3 2005B. HÄNFLING Summary 1. Releases of non-native fish into the wild is an increasing problem posing considerable ecological and genetic threats through direct competition and hybridisation. 2. We employed six microsatellite markers to identify first generation hybrids and backcrosses between native crucian carp (Carassius carassius) and introduced goldfish (C. auratus) and common carp (Cyprinus carpio) in the U.K. We also investigated the genetic characteristics of the taxonomically controversial gibel carp (Carassius spp.) from sites across Europe. 3. Natural hybridisation between goldfish and crucian carp occurs frequently, although hybrids between all other species pairs were observed. Only 62% of British crucian carp populations (n = 21) consisted exclusively of pure crucian carp. In some populations hybrids were so frequent, that no pure crucian carp were caught, indicating a high competitive ability of hybrids. 4. Most hybrids belonged to the F1 generation but backcrossing was evident at a low frequency in goldfish × crucian carp hybrids and goldfish × common carp hybrids. Furthermore, some local populations had high frequencies of backcrosses, raising the opportunity for introgression. 5. Gibel carp from Germany and Italy belonged to two triploid clonal lineages that were genetically closely related to goldfish, whereas all individuals identified from British populations proved to be crucian carp × goldfish hybrids. 6. Our study suggests that the release of closely related exotic cyprinids not only poses a threat to the genetic integrity and associated local adaptations of native species, but may also contribute to shifts in community structure through competitive interactions. [source] Disruption of the Wolbachia surface protein gene wspB by a transposable element in mosquitoes of the Culex pipiens complex (Diptera, Culicidae)INSECT MOLECULAR BIOLOGY, Issue 2 2007Y. O. Sanogo Abstract Culex pipiens quinquefasciatus Say and Culex pipiens pipiens Linnaeus are sibling species incriminated as important vectors of emerging and re-emerging infectious diseases worldwide. The two forms differ little morphologically and are differentiated mainly based upon ecological, behavioural, physiological and genetic traits. Within the North American zone of sympatry, populations of Cx. p. quinquefasciatus and Cx. p. pipiens undergo extensive introgression and hybrid forms have been reported in nature. Both Cx. p. quinquefasciatus and Cx. p. pipiens are infected with the endosymbiotic bacteria Wolbachia pipientis. Here, we report the presence of a transposable element belonging to the IS256 family (IS256wPip) associated with Wolbachia in both Cx. p. quinquefasciatus and Cx. p. pipiens populations. Using reverse transcriptase PCR and sequence analysis, we show that IS256wPip has disrupted the wspB locus, a paralogue of the Wolbachia outer membrane protein (wspA) gene. The inactivation of the wspB appears to be specific to Cx. p. quinquefasciatus and to hybrids of the two forms, and was not observed in the surveyed Cx. p. pipiens mosquitoes. Our results support the hypothesis of a different origin of North American Cx. p. quinquefasciatus and Cx. p. pipiens populations. The flux of mobile genetic elements in the Wolbachia wPip genome could explain the high level of crossing types observed among different Culex populations. The insertion of IS256wPip into wspB may comprise a genetic candidate for discriminating Wolbachia symbionts in Culex. [source] |