Intrinsic Pathway (intrinsic + pathway)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009
Kumi Kawai
Abstract Highly purified oligodendroglial lineage cells from mice lacking functional bax and bak genes were resistant to apoptosis after in-vitro differentiation, indicating an essential role of the intrinsic apoptotic pathway in apoptosis of oligodendrocytes in the absence of neurons (axons) and other glial cells. These mice therefore provide a valuable tool with which to evaluate the significance of the intrinsic apoptotic pathway in regulating the population sizes of oligodendrocytes and oligodendroglial progenitor cells. Quantitative analysis of the optic nerves and the dorsal columns of the spinal cord revealed that the absolute numbers of mature oligodendrocytes immunolabeled for aspartoacylase and adult glial progenitor cells expressing NG2 chondroitin sulfate proteoglycan were increased in both white matter tracts of adult bax/bak -deficient mice and, to a lesser extent, bax -deficient mice, except that there was no increase in NG2-positive progenitor cells in the dorsal columns of these strains of mutant mice. These increases in mature oligodendrocytes and progenitor cells in bax/bak -deficient mice were unexpectedly proportional to increases in numbers of axons in these white matter tracts, thus retaining the oligodendroglial lineage to axon ratios of at most 1.3-fold of the physiological numbers. This is in contrast to the prominent expansion in numbers of neural precursor cells in the subventricular zones of these adult mutant mice. Our study indicates that homeostatic control of cell number is different for progenitors of the oligodendroglial and neuronal lineages. Furthermore, regulatory mechanism(s) operating in addition to apoptotic elimination through the intrinsic pathway, appear to prevent the overproduction of highly mitotic oligodendroglial progenitor cells. [source]


The initiator caspase, caspase-10,, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation in Xenopus of their pro-apoptotic activities in the extrinsic and intrinsic pathways

GENES TO CELLS, Issue 7 2006
Katsuya Kominami
Two major apoptotic signaling pathways have been defined in mammals, the extrinsic pathway, initiated by ligation of death receptors, and the intrinsic pathway, triggered by cytochrome c release from mitochondria. Here, we identified and characterized the Xenopus homologs of caspase-10 (xCaspase-10,), a novel initiator caspase, and Bid (xBid), a BH3-only molecule of the Bcl-2 family involved in both the extrinsic and intrinsic pathways. Exogenous expression of these molecules induced apoptosis of mammalian cells. By biochemical and cytological analyses, we clarified that xCaspase-10, and xBid exhibit structural and functional similarities to their mammalian orthologues. We also detected xCaspase-10, and xBid transcripts during embryogenesis by whole-mount in situ hybridization and RT-PCR analysis. Microinjection of mRNA encoding a protease-defect xCaspase-10, mutant into embryos resulted in irregular development. Enforced expression of active xBid induced cell death in developing embryos. Using transgenic frogs established to allow monitoring of caspase activation in vivo, we confirmed that this form of cell death is caspase-dependent apoptosis. Thus, we demonstrated that the machinery governing the extrinsic and intrinsic apoptotic pathways are already established in Xenopus embryos. Additionally, we propose that the functions of the initiator caspase and BH3-only molecule are evolutionarily conserved in vertebrates, functioning during embryonic development. [source]


ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006
Yi-Qiang Zhang
Abstract Apoptosis repressor with a CARD domain (ARC) has been demonstrated to protect heart cells against ischemia/reperfusion (I/R) injury. In this study, we investigated the mechanism by which ARC protects heart cells against oxidative stress. We monitored the extent of apoptosis and activity of multiple components of the intrinsic apoptotic pathway in rat cardiac myoblast cell line H9c2 with either reduced or increased expression of ARC during oxidative stress. Overexpression of ARC-inhibited oxidative stress-induced caspase-2/3 activation, cytochrome c release, and translocation of Bax to mitochondria. Furthermore, phosphorylation of ARC at threonine 149 was found to be critical to its function. ARC containing a T149A mutation failed to translocate to mitochondria, did not inhibit caspase-2 activation, and had a dominant negative effect against the protective effect of endogenous ARC during oxidative stress. In addition, wild-type ARC but not the T149A mutant inhibited cell death induced by overexpression of caspase-2. Using a yeast two-hybrid (YTH) screening approach and co-immunoprecipitation (Co-IP), we found that protein phosphatase 2C (PP2C) interacted with ARC and that PP2C mediated-dephosphorylation of ARC inhibited its anti-apoptotic activity. Eliminating either the N-terminal CARD domain or the C-terminal P/E domain also abolished the anti-apoptotic function of ARC, suggesting that full-length ARC is required for its apoptotic inhibition. These results indicate that ARC plays an important role in protection of H9c2 cells against oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, partially initiated through the activation of caspase-2. J. Cell. Biochem. 99: 575,588, 2006. © 2006 Wiley-Liss, Inc. [source]


Bif-1 and Bax expression in cutaneous Merkel cell carcinoma

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 1 2009
Scott M. Schlauder
Background:, Bax-interacting factor-1 (Bif-1) binds to Bax, which in turn activates this proapoptotic protein. In the absence of Bif-1, the ability to induce apoptosis through the intrinsic pathway is greatly reduced. Merkel cell carcinoma (MCC) classically shows an aggressive behavior and lack of response to chemotherapy, which remains unexplained. Previous studies have documented the presence of Bax in MCC, but Bif-1 expression has not been evaluated. Herein, the expression of Bif-1 and Bax in cutaneous MCC is examined. Materials and methods:, The immunohistochemical expression of Bif-1 and Bax protein was examined in nine cases of MCC. Both positive and negative controls were conducted. All the cases were reviewed by a single dermatopathologist. Results:, Bif-1 was detected in nine cases (100%), and Bax was expressed in six cases (66%). The percent positive cells for Bif-1 in MCC ranged from 85% to 98% positive (mean 93.9%). At the same time, decreased Bax expression was shown with 0,8% positive cells (mean 3.45%). Conclusion:, The increased expression of Bif-1 in MCC is associated with low levels of Bax staining. These findings suggest that the upregulation of Bif-1 could in part be responsible for tumorigenesis in cutaneous MCC. As shown, Bax and Bif-1 expression are not exclusively antithetical; therefore, future studies evaluating the expression of both proteins should be conducted. [source]


Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2

JOURNAL OF PINEAL RESEARCH, Issue 3 2008
Flavia Radogna
Abstract:, We have recently shown that melatonin antagonizes damage-induced apoptosis by interaction with the MT-1/MT-2 plasma membrane receptors. Here, we show that melatonin interferes with the intrinsic pathway of apoptosis at the mitochondrial level. In response to an apoptogenic stimulus, melatonin allows mitochondrial translocation of the pro-apoptotic protein Bax, but it impairs its activation/dimerization The downstream apoptotic events, i.e. cytochrome c release, caspase 9 and 3 activation and nuclear vesiculation are equally impaired, indicating that melatonin interferes with Bax activation within mitochondria. Interestingly, we found that melatonin induces a strong re-localization of Bcl-2, the main Bax antagonist to mitochondria, suggesting that Bax activation may in fact be antagonized by Bcl-2 at the mitochondrial level. Indeed, we inhibit the melatonin anti-apoptotic effect (i) by silencing Bcl-2 with small interfering RNAs, or with small-molecular inhibitors targeted at the BH3 binding pocket in Bcl-2 (i.e. the one interacting with Bax); and (ii) by inhibiting melatonin-induced Bcl-2 mitochondrial re-localization with the MT1/MT2 receptor antagonist luzindole. This evidence provides a mechanism that may explain how melatonin through interaction with the MT1/MT2 receptors, elicits a pathway that interferes with the Bcl-2 family, thus modulating the cell life/death balance. [source]


Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulation

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 5 2010
E. S. GERSHOM
Summary.,Background:,A hemostatic response to vascular injury is initiated by the extrinsic pathway of coagulation and amplified by the intrinsic pathway. We previously reported that purified herpes simplex virus type-1 (HSV1) has constitutive extrinsic pathway tissue factor (TF) and anionic phospholipid on its surface derived from the host cell, and can consequently bypass strict cellular control of coagulation. Objective:,The current work addresses the hypothesis that HSV1-induced plasma coagulation also involves intrinsic pathway, factor VIII (FVIII), and upstream contact activation pathway, factor XII (FXII). Results:,HSV1-initiated clotting was accelerated when purified FVIII was added to FVIII-deficient plasma and in normal plasma attenuated by an inhibitory anti-FVIII antibody (Ab). High HSV1 concentrations predictably reduced the effect of FVIII due to the availability of excess viral TF. To further define TF-independent clotting mechanisms initiated by HSV1, the extrinsic pathway was disabled using factor VII-deficient plasma. The intrinsic pathway is triggered by activation of FXII associated with surface-bound kallikrein, which subsequently activates factor XI. Here we found that an inhibitor of activated FXII, corn trypsin inhibitor, and anti-FXII, anti-kallikrein and anti-FXI Abs inhibited HSV1-initiated clotting. HSV1-enhanced activation of purified FXII was confirmed by Western blot, but required prekallikrein. Conclusion:,The current work shows that HSV1 can trigger and amplify coagulation through the contact phase and intrinsic pathway, and suggests an additional mechanism that may contribute to vascular pathology. [source]


Factor XI deficiency in animal models

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2009
T. RENNÉ
Summary., The blood coagulation system forms fibrin to limit blood loss from sites of injury, but also contributes to occlusive diseases such as deep vein thrombosis, myocardial infarction, and stroke. In the current model of a coagulation balance, normal hemostasis and thrombosis represent two sides of the same coin; however, data from coagulation factor XI-deficient animal models have challenged this dogma. Gene targeting of factor XI, a serine protease of the intrinsic pathway of coagulation, severely impairs arterial thrombus formation but is not associated with excessive bleeding. Mechanistically, factor XI may be activated by factor XII following contact activation or by thrombin in a feedback activation loop. This review focuses on the role of factor XI, and its deficiency states as novel target for prevention of thrombosis with low bleeding risk in animal models. [source]


Relevance of caspase activity during apoptosis in pubertal rat spermatogenesis

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2008
Veronica A. Codelia
Abstract Caspases are a family of cysteine-proteases, activated upon several different stimuli, which execute apoptosis in many cell death models. Previous work of our group has shown rats have the highest rate of apoptosis during the first wave of spermatogenesis (between 20 and 25 days after birth), as evaluated by TUNEL and caspase activity. However, the hierarchical order of caspase activation and the relevance of each caspase during germ cell apoptosis are not clear. Thus, the goal of this work is to take a pharmacological approach to dissect the apoptosis pathway of caspase activation. Results showed that intratesticular injection of a caspase-8 inhibitor (z-IETD-fmk), or a pan-caspase inhibitor (z-VAD- fmk), significantly decreased the cleavage of p115 and PARP, two endogenous substrates of caspases, in 22-day-old rats. Additionally, these inhibitors promoted a significant reduction in the number of apoptotic germ cells. On the other hand, intratesticular injection of two different inhibitors of the intrinsic pathway (z-LEHD-fmk and minocycline) did not have any effect upon caspase substrates cleavage (p115 and PARP) or the number of apoptotic germ cells. Therefore, we conclude that the extrinsic pathway of apoptosis plays an important role in physiological germ cell apoptosis during the first round of spermatogenesis in the rat. Mol. Reprod. Dev. 75: 881,889, 2008. © 2007 Wiley-Liss, Inc. [source]


Downmodulation of Bcl-2 sensitizes metastatic LNCaP-LN3 cells to undergo apoptosis via the intrinsic pathway

THE PROSTATE, Issue 6 2010
Renduo Song
Abstract BACKGROUND We explored the mechanisms of apoptosis after Bcl-2 protein downmodulation in metastatic LNCaP-LN3 cells (LN3). METHODS LNCaP, LNCaP-Pro5 (Pro5) and LN3 cells were cultured in 5% charcoal-stripped serum (CSS) or in R1881 (synthetic androgen) and bicalutamide (synthetic anti-androgen) and growth inhibition was assessed. Expression levels of androgen receptor (AR) and Bcl-2 were determined. LN3 cells were transfected with small interfering RNA Bcl-2 (siRNA Bcl-2) or control siRNA oligonucleotides. Rates of apoptosis and proliferation were obtained. Cytochrome c localization in treated and control cells was assessed,±,cyclosporine A (CsA). Caspases 9, 3, and poly (ADP-ribose) polymerase cleavage (PARP) were measured upon downmodulation of Bcl-2; and cell growth inhibition in vitro after Bcl-2 modulation combined with docetaxel chemotherapy was determined. RESULTS LN3 cells maintained growth under castrate conditions in vitro. AR protein amplification did not explain castrate-resistant LN3 cell growth. Bcl-2 protein levels in LN3 cells were significantly higher than in Pro5 cells, and were effectively downmodulated by siRNA Bcl-2. Subsequently increased apoptosis and decreased proliferation mediated by cytochrome c was noted and this was reversed by CsA. siRNA Bcl-2-transfected LN3 cells exhibited elevated levels of caspases 9, 3, and PARP cleavage. Exposure of LN3 cells to docetaxel led to increased apoptosis, and simultaneous downmodulation of Bcl-2 substantially enhanced this effect. CONCLUSIONS Downmodulation of Bcl-2 in metastatic castrate-resistant LNCaP-LN3 cells led to apoptosis via a cytochrome c -dependent pathway that was enhanced with docetaxel treatment. Prostate 70: 571,583, 2010. © 2009 Wiley-Liss, Inc. [source]


The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells

BIOTECHNOLOGY PROGRESS, Issue 3 2010
Xia Xu
Abstract Human embryonic stem (hES) cells have enormous potential for clinical applications. However, one major challenge is to achieve high cell recovery rate after cryopreservation. Understanding how the conventional cryopreservation protocol fails to protect the cells is a prerequisite for developing efficient and successful cryopreservation methods for hES cell lines and banks. We investigated how the stimuli from cryopreservation result in apoptosis, which causes the low cell recovery rate after cryopreservation. The level of reactive oxygen species (ROS) is significantly increased, F-actin content and distribution is altered, and caspase-8 and caspase-9 are activated after cryopreservation. p53 is also activated and translocated into nucleus. During cryopreservation apoptosis is induced by activation of both caspase-8 through the extrinsic pathway and caspase-9 through the intrinsic pathway. However, exactly how the extrinsic pathway is activated is still unclear and deserves further investigation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Mechanisms of neutrophil death in human immunodeficiency virus-infected patients: role of reactive oxygen species, caspases and map kinase pathways

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2007
S. Salmen
Summary Neutrophils from human immunodeficiency virus-positive (HIV+) patients have an increased susceptibility to undergo programmed cell death (PCD), which could explain neutropenia during advanced disease. In this work, key steps of PCD have been evaluated in neutrophils from HIV+ patients. The role of caspase-3, caspase-8, mitogen activated protein kinase (MAPK) and reactive oxygen species (ROS) was analysed. Spontaneous neutrophil death is dependent upon caspase-3 but independent of caspase-8, suggesting that the intrinsic pathway is involved as a pathogenic mechanism of PCD. Inhibition of ROS decreased spontaneous PCD and caspase-3 hydrolysis, connecting oxidative stress and caspase-3 activation with neutrophil PCD in HIV-infected patients. Additionally, an increased neutrophil death was observed in HIV+ patients, following inhibition of p38 MAPK, suggesting a role for p38 MAPK in cell survival during the disease. We conclude that oxidative stress secondary to HIV infection can accelerate neutrophil death. [source]


Defining the caspase-containing apoptotic machinery contributing to cornification in human epidermal equivalents

EXPERIMENTAL DERMATOLOGY, Issue 1 2006
Vijaya Chaturvedi
Abstract:, Whether terminal differentiation/stratum corneum formation of keratinocytes (KCs) represents a form of programmed cell death, utilizing mediators of classical apoptosis, is unclear. Apoptosis, an evolutionarily conserved death process, is comprised of extrinsic and intrinsic pathways, which converge using caspase 3. To define upstream and downstream caspases involved in terminal differentiation, we utilized human epidermal equivalents (EEs). Using submerged cultures comprised of human KCs, EEs were sequentially analyzed before and after being raised to an air/liquid (A/L) interface at 3,24 h intervals. At each time point, EEs were analyzed morphologically and for specific enzyme activity to distinguish different initiator (caspases 1, 2, 8, 9) and effector caspases (3, 6, 7). Terminal differentiation began at 6,8 h, as defined by stratum corneum with loricirin expression and completed at 18,24 h producing an epidermis resembling normal skin. Enzyme activity for caspases 1, 2, 3, 6, 7, 8, and 9 (but not 4, 5) was enhanced (>two-fold nmol/mg/h) at 3,6 h compared with submerged cultures. Processing of caspase 14 occurred at 18 h, and cleaved caspase 14 was increased at 24 h. Activated caspase 3-positive and terminal deoxynucleotidyl transferase-mediated nick end labeling-positive KCs were identified in EEs at 3,6 h corresponding to initiation sites of terminal differentiation. Addition of caspase inhibitors reduced levels of involucrin and loricrin in EEs raised to an A/L interface. We conclude caspases function as important death effectors strategically positioned at intersection of intrinsic and extrinsic pathways in KCs undergoing stratum corneum formation. [source]


The initiator caspase, caspase-10,, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation in Xenopus of their pro-apoptotic activities in the extrinsic and intrinsic pathways

GENES TO CELLS, Issue 7 2006
Katsuya Kominami
Two major apoptotic signaling pathways have been defined in mammals, the extrinsic pathway, initiated by ligation of death receptors, and the intrinsic pathway, triggered by cytochrome c release from mitochondria. Here, we identified and characterized the Xenopus homologs of caspase-10 (xCaspase-10,), a novel initiator caspase, and Bid (xBid), a BH3-only molecule of the Bcl-2 family involved in both the extrinsic and intrinsic pathways. Exogenous expression of these molecules induced apoptosis of mammalian cells. By biochemical and cytological analyses, we clarified that xCaspase-10, and xBid exhibit structural and functional similarities to their mammalian orthologues. We also detected xCaspase-10, and xBid transcripts during embryogenesis by whole-mount in situ hybridization and RT-PCR analysis. Microinjection of mRNA encoding a protease-defect xCaspase-10, mutant into embryos resulted in irregular development. Enforced expression of active xBid induced cell death in developing embryos. Using transgenic frogs established to allow monitoring of caspase activation in vivo, we confirmed that this form of cell death is caspase-dependent apoptosis. Thus, we demonstrated that the machinery governing the extrinsic and intrinsic apoptotic pathways are already established in Xenopus embryos. Additionally, we propose that the functions of the initiator caspase and BH3-only molecule are evolutionarily conserved in vertebrates, functioning during embryonic development. [source]


Caspases and apoptosis in fish

JOURNAL OF FISH BIOLOGY, Issue 2007
H. Takle
Apoptosis has a vital impact on the development and homeostasis of all multicellular organisms. Hence, all metazoan species seem to possess the necessary components of the apoptotic machinery, but in general, their numbers and complexity have increased during evolution. The key apoptotic factors are a cascade of cysteine proteases known as caspases. The fish homologous of almost all the mammalian caspases have also been identified, but several fish-specific caspases with putative distinct functions have also been reported. Despite these differences, the extrinsic and intrinsic pathways have been remarkably well conserved throughout 500 million years of vertebrate evolution. Here, the authors review what is currently known about fish caspases and apoptosis and demonstrate the huge amount of sequence information available from a range of fish species by screening Atlantic salmon genome databases for apoptotic homologous. [source]


Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling,

MOLECULAR CARCINOGENESIS, Issue 1 2010
Jane L. Watson
Abstract New cytotoxic agents are urgently needed for the treatment of advanced ovarian cancer because of the poor long-term response of this disease to conventional chemotherapy. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity; however, the mechanism of curcumin-induced cytotoxicity in ovarian cancer cells remains a mystery. In this study we show that curcumin exhibited time- and dose-dependent cytotoxicity against monolayer cultures of ovarian carcinoma cell lines with differing p53 status (wild-type p53: HEY, OVCA429; mutant p53: OCC1; null p53: SKOV3). In addition, p53 knockdown or p53 inhibition did not diminish curcumin killing of HEY cells, confirming p53-independent cytotoxicity. Curcumin also killed OVCA429, and SKOV3 cells grown as multicellular spheroids. Nuclear condensation and fragmentation, as well as DNA fragmentation and poly (ADP-ribose) polymerase-1 cleavage in curcumin-treated HEY cells, indicated cell death by apoptosis. Procaspase-3, procaspase-8, and procaspase-9 cleavage, in addition to cytochrome c release and Bid cleavage into truncated Bid, revealed that curcumin activated both the extrinsic and intrinsic pathways of apoptosis. Bax expression was unchanged but Bcl-2, survivin, phosphorylated Akt (on serine 473), and total Akt were downregulated in curcumin-treated HEY cells. Curcumin also activated p38 mitogen-activated protein kinase (MAPK) without altering extracellular signal-regulated kinase 1/2 activity. We conclude that p53-independent curcumin-induced apoptosis in ovarian carcinoma cells involves p38 MAPK activation, ablation of prosurvival Akt signaling, and reduced expression of the antiapoptotic proteins Bcl-2 and survivin. These data provide a mechanistic rationale for the potential use of curcumin in the treatment of ovarian cancer. © 2009 Wiley-Liss, Inc. [source]


Fundamentals of neuronal apoptosis relevant to pediatric anesthesia

PEDIATRIC ANESTHESIA, Issue 5 2010
MORGAN BLAYLOCK PhD
Summary The programmed cell death or apoptosis is a complex biochemical process that has risen to prominence in pediatric anesthesia. Preclinical studies report a dose-dependant neuronal apoptosis during synaptogenesis following exposure to intravenous and volatile anesthetic agents. Although emerging clinical data do not universally indicate an increased neurodegenerative risk of general anesthesia in early human life, a great deal of uncertainty was created within the pediatric anesthesia community. This was at least partially caused by the demand of understanding of basic science concepts and knowledge of apoptosis frequently out of reach to the clinician. It is, however, important for the pediatric anesthesiologist to be familiar with the basic science concepts of neuronal apoptosis to be able to critically evaluate current and future preclinical data in this area and future clinical studies. This current review describes the extrinsic and intrinsic pathways involved in the cell death process and discusses techniques commonly employed to determine apoptosis. In addition, potential mechanisms of anesthesia-induced neuronal apoptosis are illustrated in this review. [source]


Comparison of broadband UVB, narrowband UVB, broadband UVA and UVA1 on activation of apoptotic pathways in human peripheral blood mononuclear cells

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 1 2007
Chanisada Tuchinda
Background/purpose: Ultraviolet (UV) radiation is an important therapy for immune-mediated cutaneous diseases. Activation of early apoptotic pathways may play a role in the clinical effectiveness. Different UV wavelengths have different efficacy for various diseases, but it remains unclear whether the ability to induce apoptosis differs with respect to the wavelength, and whether they induce apoptosis through the same mechanism. The aim of this study is to analyze the effects of different UV wavelengths that are used clinically on normal human peripheral blood mononuclear cells (PBMCs). Methods: PBMCs were treated with UV-light sources broadband UVB, narrowband UVB, broadband UVA and UVA1. Initiation of apoptosis was assessed by flow cytometry by staining,treated cells for activated caspases. Immunoblots were performed to measure for cleaved caspase-3, -8, -9, cytochrome c, Bcl 2-interacting domain and poly-(ADP ribose) polymerase cleavage. Results: We demonstrate that all the UV radiation sources induced caspase activation in a dose-and time-dependent manner. Components of both the extrinsic and intrinsic pathways of apoptosis were activated by all of the UV wavelengths tested, but differed in the level of energy needed for activation. Conclusion: The greater effectiveness of UVB on initiation of apoptotic pathway suggests that apoptosis may play a role in the clinical efficacy of UVB-responsive inflammatory cutaneous diseases. [source]


REVIEW ARTICLE: Placental Apoptosis in Health and Disease

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2010
Andrew N. Sharp
Citation Sharp AN, Heazell AEP, Crocker IP, Mor G. Placental apoptosis in health and disease. Am J Reprod Immunol 2010; 64: 159,169 Apoptosis, programmed cell death, is an essential feature of normal placental development but is exaggerated in association with placental disease. Placental development relies upon effective implantation and invasion of the maternal decidua by the placental trophoblast. In normal pregnancy, trophoblast apoptosis increases with placental growth and advancing gestation. However, apoptosis is notably exaggerated in the pregnancy complications, hydatidiform mole, pre-eclampsia, and intrauterine growth restriction (IUGR). Placental apoptosis may be initiated by a variety of stimuli, including hypoxia and oxidative stress. In common with other cell-types, trophoblast apoptosis follows the extrinsic or intrinsic pathways culminating in the activation of caspases. In contrast, the formation of apoptotic bodies is less clearly identified, but postulated by some to involve the clustering of apoptotic nuclei and liberation of this material into the maternal circulation. In addition to promoting a favorable maternal immune response, the release of this placental-derived material is thought to provoke the endothelial dysfunction of pre-eclampsia. Widespread apoptosis of the syncytiotrophoblast may also impair trophoblast function leading to the reduction in nutrient transport seen in IUGR. A clearer understanding of placental apoptosis and its regulation may provide new insights into placental pathologies, potentially suggesting therapeutic targets. [source]


Are Standard Human Coagulation Tests Suitable in Pigs and Calves During Extracorporeal Circulation?

ARTIFICIAL ORGANS, Issue 7 2001
Xavier M. Mueller
Abstract: The thrombogenicity of membrane oxygenators as well as clotting parameters profiles, using standard human clotting tests, was analyzed in calves and pigs during 6 h perfusion. Three calves and 3 pigs were connected to extracorporeal circulation with standard heparinization. Blood samples were taken for coagulation variables throughout perfusion, and oxygenators were examined for clot deposits at the end of the experiment. Two out of 3 oxygenators of the calf group presented clot deposits while none in the pig group did. Baseline coagulation variables of pigs showed values similar to those of humans while neither extrinsic nor intrinsic pathways could be activated in calves with standard human coagulation tests. The calf model, in conclusion, was confirmed to be a difficult model for the testing of extracorporeal circulation device resistance to thrombus formation, which is, however, not reflected by standard human coagulation tests. The pig model is a better model in which both coagulation pathways could be activated with standard human coagulation tests. [source]


Haemostatic screening and identification of zebrafish mutants with coagulation pathway defects: an approach to identifying novel haemostatic genes in man

BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2000
Pudur Jagadeeswaran
Zebrafish were used as a model to study haemostasis, a vertebrate function of paramount importance. A limitation of the zebrafish model is the difficulty in assaying small amounts of blood to detect coagulation mutants. We report the use of a rapid total coagulation activity (TCA) assay to screen for coagulation defects in individual adult zebrafish. We screened the TCA in 1000 gynogenetic half-tetrad diploids derived from 86 clutches. Each clutch was from a single F1 female offspring of males mutagenized with ethylnitrosourea (ENU). We found 30,50% defective zebrafish among six clutches, consistent with a heritable defect. The assay developed here provided a rapid screen to detect overall coagulation defects. However, because of the limited amounts of plasma, we could not detect defects in specific pathways. Therefore, a novel, ultra-sensitive kinetic method was developed to identify specific pathway defects. To test whether the kinetic assay could be used as a screening tool, 1500 Florida wild-type zebrafish pairs were analysed for naturally occurring coagulation defects. We detected 30 fish with extrinsic pathway defects, but with intact common and intrinsic pathways. We conclude that it is now possible to identify specific coagulation pathway defects in zebrafish. [source]


Ecology-based screen identifies new metabolites from a Cordyceps -colonizing fungus as cancer cell proliferation inhibitors and apoptosis inducers

CELL PROLIFERATION, Issue 6 2009
Y. Chen
Objectives:, This study aims to identify new anti-cancer agents from Cordyceps -colonizing fungi, using an ecology-based approach. It also aims to explore their anti-cell proliferative mechanisms, and to evaluate their anti-tumour effects in vivo. Materials and methods:, Extracts from Cordyceps -colonizing fungi were tested on HeLa cells, and active extracts were separated to obtain anti-tumour metabolites; their structures were elucidated by mass and nuclear magnetic resonance spectroscopy. Cell cycle analysis was evaluated using flow cytometry. Tumour formation assays were performed using C57BL/6J mice. Results:, Based on ecological considerations, the selected extracts were subjected to initial anti-tumour screening. Bioassay-guided fractionation of the active extract afforded two new epipolythiodioxopiperazines, named gliocladicillins A (1) and B (2). (A) 1 and B (2) inhibited growth of HeLa, HepG2 and MCF-7 tumour cells. Further study demonstrated that both preparations arrested the cell cycle at G2/M phase in a dose-dependent manner, and induced apoptosis through up-regulation of expression of p53, p21, and cyclin B, and activation of caspases-8, -9 and -3. These data imply that gliocladicillins A (1) and B (2) induce tumour cell apoptosis through both extrinsic and intrinsic pathways. In addition, in vivo studies showed that they displayed significant inhibitory effects on cell population growth of melanoma B16 cells imlanted into immunodeficient mice. Conclusions:, Gliocladicillins A (1) and B (2) are effective anti-tumour agents in vitro and in vivo and should be further evaluated for their potential in clinical use. [source]