Home About us Contact | |||
Intracerebral Injection (intracerebral + injection)
Selected AbstractsNeuronal uptake and metabolism of glycerol and the neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenaseJOURNAL OF NEUROCHEMISTRY, Issue 4 2003Nga Huynh Tran Nguyen Abstract Glycerol is effective in the treatment of brain oedema but it is unclear if this is due solely to osmotic effects of glycerol or whether the brain may metabolize glycerol. We found that intracerebral injection of [14C]glycerol in rat gave a higher specific activity of glutamate than of glutamine, indicating neuronal metabolism of glycerol. Interestingly, the specific activity of GABA became higher than that of glutamate. NMR spectroscopy of brains of mice given 150 µmol [U- 13C]glycerol (0.5 m i.v.) confirmed this predominant labelling of GABA, indicating avid glycerol metabolism in GABAergic neurones. Uptake of [14C]glycerol into cultured cerebellar granule cells was inhibited by Hg2+, suggesting uptake through aquaporins, whereas Hg2+ stimulated glycerol uptake into cultured astrocytes. The neuronal metabolism of glycerol, which was confirmed in experiments with purified synaptosomes and cultured cerebellar granule cells, suggested neuronal expression of glycerol kinase and some isoform of glycerol-3-phosphate dehydrogenase. Histochemically, we demonstrated mitochondrial glycerol-3-phosphate dehydrogenase in neurones, whereas cytosolic glycerol-3-phosphate dehydrogenase was three to four times more active in white matter than in grey matter, reflecting its selective expression in oligodendroglia. The localization of mitochondrial and cytosolic glycerol-3-phosphate dehydrogenases in different cell types implies that the glycerol-3-phosphate shuttle is of little importance in the brain. [source] Preconditioning with thrombin can be protective or worsen damage after endothelin-1-induced focal ischemia in ratsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2006Petra Henrich-Noack Abstract The serine protease thrombin has shown direct neuroprotective and neurotoxic effects on brain tissue in cerebral ischemia. Previous data suggested that thrombin-induced protection in vivo can be achieved by preconditioning rather than by acute treatment. In the current work, we used a model of mild ischemia to investigate the effects of preischemic intracerebral thrombin injection on neural damage. By intracerebral injection of endothelin-1 in freely moving animals, we achieved middle cerebral artery occlusion (MCAO), and 7 days postischemia we performed histological quantification of the infarct areas. Thrombin was injected as a preconditioning stimulus intracerebrally 7 days or 2 and 3 days before ischemia. For acute treatment, thrombin was injected 20 min before MCAO. Thrombin induced significant neuroprotection when given 7 days before endothelin-1-induced MCAO but was deleterious when given 2 and 3 days before the insult. The deleterious effect was not seen when thrombin was given acutely before ischemia. Our data demonstrate that preconditioning with thrombin can protect against damage or worsen ischemic damage. Its effect depended on the time interval between thrombin injection and insult. A low dose of thrombin did not induce a major deleterious effect in the acute phase of the infarct development after mild transient ischemia. © 2006 Wiley-Liss, Inc. [source] Injections of Blood, Thrombin, and Plasminogen More Severely Damage Neonatal Mouse Brain Than Mature Mouse BrainBRAIN PATHOLOGY, Issue 4 2005Mengzhou Xue MD The mechanism of brain cell injury associated with intracerebral hemorrhage may be in part related to proteolytic enzymes in blood, some of which are also functional in the developing brain. We hypothesized that there would be an age-dependent brain response following intracerebral injection of blood, thrombin, and plasminogen. Mice at 3 ages (neonatal, 10-day-old, and young adult) received autologous blood (15, 25, and 50 ,l respectively), thrombin (3, 5, and 10 units respectively), plasminogen (0.03, 0.05, and 0.1 units respectively) (the doses expected in same volume blood), or saline injection into lateral striatum. Forty-eight hours later they were perfusion fixed. Hematoxylin and eosin, lectin histochemistry, Fluoro-Jade, and TUNEL staining were used to quantify changes related to the hemorrhagic lesion. Damage volume, dying neurons, neutrophils, and microglial reaction were significantly greater following injections of blood, plasminogen, and thrombin compared to saline in all three ages of mice. Plasminogen and thrombin associated brain damage was greatest in neonatal mice and, in that group unlike the other 2, greater than the damage caused by whole blood. These results suggest that the neonatal brain is relatively more sensitive to proteolytic plasma enzymes than the mature brain. [source] Fas/CD95/APO-1 Can Function as a Death Receptor for Neuronal Cells in Vitro and in Vivo and is Upregulated Following Cerebral Hypoxic-Ischemic Injury to the Developing Rat BrainBRAIN PATHOLOGY, Issue 1 2000Ursula Felderhoff-Mueser Fas/CD95/Apo-1 is a cell surface receptor that transduces apoptotic death signals following activation and has been implicated in triggering apoptosis in infected or damaged cells in disease states. Apoptosis is a major mechanism of neuronal loss following hypoxic-ischemic injury to the developing brain, although the role of Fas in this process has not been studied in detail. In the present study, we have investigated the expression and function of Fas in neuronal cells in vitro and in vivo. Fas was found to be expressed in the 14 day old rat brain, with strongest expression in the cortex, hippocampus and cerebellum. Cross-linking of Fas induced neuronal apoptosis both in neuronal PC12 cells in culture and following intracerebral injection in vivo, indicating that neuronal Fas was functional as a death receptor. This death was shown to be caspase dependent in primary neuronal cultures and was blocked by the selective caspase 8 inhibitor IETD. Finally, cerebral hypoxia-ischemia resulted in a strong lateralised upregulation of Fas in the hippocampus, that peaked six to twelve hours after the insult and was greater on the side of injury. These results suggest that Fas may be involved in neuronal apoptosis following hypoxic-ischemic injury to the developing brain. [source] Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal miceTHE JOURNAL OF GENE MEDICINE, Issue 4 2006Elena Fedorova Abstract Background Direct injection of lentivectors into the central nervous system (CNS) mostly results in localized parenchymal transgene expression. Intrathecal gene delivery into the spinal canal may produce a wider dissemination of the transgene and allow diffusion of secreted transgenic proteins throughout the cerebrospinal fluid (CSF). Herein, we analyze the distribution and expression of LacZ and SEAP transgenes following the intrathecal delivery of lentivectors into the spinal canal. Methods Four weeks after intrathecal injection into the spinal canal of newborn mice, the expression of the LacZ gene was assessed by histochemical staining and by in situ polymer chain reaction (PCR). Following the spinal infusion of a lentivector carrying the SEAP gene, levels of enzymatically active SEAP were measured in the CSF, blood serum, and in brain extracts. Results Intrathecal spinal canal delivery of lentivectors to newborn mice resulted in patchy, widely scattered areas of ,-gal expression mostly in the meninges. The transduction of the meningeal cells was confirmed by in situ PCR. Following the spinal infusion of a lentivector carrying the SEAP gene, sustained presence of the reporter protein was detected in the CSF, as well as in blood serum, and brain extracts. Conclusions These findings indicate that intrathecal injections of lentivectors can provide significant levels of transgene expression in the meninges. Unlike intracerebral injections of lentivectors, intrathecal gene delivery through the spinal canal appears to produce a wider diffusion of the transgene. This approach is less invasive and may be useful to address those neurological diseases that benefit from the ectopic expression of soluble factors impermeable to the blood-brain barrier. Copyright © 2006 John Wiley & Sons, Ltd. [source] |