Intracellular Targets (intracellular + target)

Distribution by Scientific Domains


Selected Abstracts


Flow cytometry for ZAP-70: New colors for chronic lymphocytic leukemia

CYTOMETRY, Issue 4 2006
Adrian Wiestner
Abstract ZAP-70 has become one of the most studied prognostic markers in Chronic Lymphocytic Leukemia (CLL). ZAP-70 is remarkable in many ways: ZAP-70 has been identified as the best discriminating gene between prognostically distinct CLL subtypes using large scale gene expression profiling; ZAP-70 has been shown to enhance signal transduction in CLL B-cells and therefore could contribute to disease progression; and ZAP-70 is one of the rare examples of an intracellular target considered for clinical flow cytometry. This issue attests to the enormous effort and the steady progress made in overcoming technical challenges of testing for ZAP-70 expression and sets the foundation for a successful translation of this important marker into clinical practice. Despite the best effort, one will likely have to accept that not all cases can be clearly assigned to one or the other group, given that ZAP-70 expression between CLL patients falls along a continuum from absent to high. Nevertheless, ZAP-70 expression could become a key parameter to guide patients towards risk adapted treatment strategies in prospective clinical trials. © 2006 International Society for Analytical Cytology [source]


The Intracellular Target for the Antiresorptive Aminobisphosphonate Drugs in Dictyostelium discoideum Is the Enzyme Farnesyl Diphosphate Synthase,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2000
Joanna E. Grove
Abstract Aminobisphosphonate (aBP) drugs inhibit osteoclast-mediated bone resorption and also growth of amoebas of Dictyostelium discoideum apparently by interaction with the same intracellular target. Identification of the target in Dictyostelium therefore could also identify the target in osteoclasts. The aBPs (100 ,M alendronate and 30 ,M YM-175) inhibited conversion of [14C]mevalonate into sterols by cultures of Dictyostelium amoebas. One of three enzymes (isopentenyl diphosphate [IDP] isomerase, farnesyl diphosphate [FDP] synthase, and squalene synthase) appeared to be the target for this inhibition because conversion of [14C]IDP into squalene, the immediate precursor for sterol biosynthesis, was inhibited in extracts of wild-type amoebas by alendronate (IC50 = 75 nM) or risedronate (IC50 = 30 nM) whereas, when the extract had been prepared from amoebas of strains selected for having partial resistance to the growth-inhibitory effects of alendronate (strain MR102) or risedronate (strain RB101), the values of IC50 were increased to 700 nM for alendronate (MR102 extract) or 130 nM for risedronate (RB101 extract). Neither IDP isomerase nor squalene synthase was inhibited significantly by alendronate or risedronate but both of these aBP drugs, and all others tested, inhibited FDP synthase. Determination of the nucleotide sequences of complementary DNAs (cDNAs) encoding FDP synthase in the wild-type and aBP-resistant strains of Dictyostelium indicated that there had been no changes in the amino acid sequence of the enzyme in the mutant strains. However, both mutant strains overproduce FDP synthase. It is concluded that FDP synthase is the intracellular target for the aBP drugs. (J Bone Miner Res 2000;15:971,981) [source]


Distinct effects of atypical 1,4-dihydropyridines on 1-methyl-4-phenylpyridinium-induced toxicity

CELL BIOCHEMISTRY AND FUNCTION, Issue 1 2007
Linda Klimaviciusa
Abstract Our previous data obtained from in vivo experiments demonstrated high neuroprotective effects of three novel atypical neuronal non-calcium antagonistic 1,4-dihydropyridine (DHP) derivatives cerebrocrast, glutapyrone and tauropyrone. The present studies were carried out in vitro to clarify, at least in part, their mechanism of action in primary culture of cerebellar granule cells by use of 1-methyl-4-phenylpyridinium (MPP+) as a neurotoxic agent which causes dramatic oxidative stress. Cerebrocrast (highly lipophilic, with a classical two-ring structure) dose-dependently (0.01,10.0,µM, EC50,=,13,nM) reduced MPP+ -induced cell death. At the same time, the calcium antagonist nimodipine (reference drug) protected cell death at much higher concentrations (EC50,=,12.4,µM). Cerebrocrast decreased also the generation of reactive oxygen species and loss of mitochondrial membrane potential. In contrast, low lipophilic amino acid-containing DHPs glutapyrone and tauropyrone (glutamate- and taurine-containing, correspondingly) were without significant effects indicating their distinct mode of action in comparison to cerebrocrast. We have demonstrated for the first time an ability of atypical non-calcium antagonistic DHP cerebrocrast (which has classical DHP structure elements and high lipophilicity) to protect MPP+ -induced deterioration of mitochondrial bioenergetics. One may suggest mitochondria as an essential intracellular target for the neuroprotective action of cerebrocrast and indicate its usefulness in the treatment of Parkinson's disease. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Delivery of bioactive, gel-isolated proteins into live cells

ELECTROPHORESIS, Issue 9 2003
Jennifer E. Taylor
Abstract The delivery of proteins into live cells is a promising strategy for the targeted modulation of protein-protein interactions and the manipulation of specific cellular functions. Cellular delivery can be facilitated by complexing the protein of interest with carrier molecules. Recently, an amphipatic peptide was identified, Pep-1 (KETWWETWWTE WSQPKKKRKV), which crosses the plasma membrane of many cell types to carry and deliver proteins as large as antibodies. Pep-1 effectively delivers proteins in solution; but Pep-1 is not suitable for delivering sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) isolated proteins because Pep-1 complexes with cargo proteins are destroyed by SDS. Here, we report cellular delivery of SDS-PAGE-isolated proteins, without causing cellular damage, by using a nonionic detergent, Triton X-100, as carrier. To determine the specificity of our method, we separated antibodies against different intracellular targets by nonreducing SDS-PAGE. Following electrophoresis, the antibody bands were detected by zinc-imidazole reverse staining, excised, in-gel refolded with Triton X-100, and eluted in detergent-free phosphate-buffered saline. When overlaid on cultured NIH 3T3 cells, the antibodies penetrated the cells localizing to their corresponding intracellular targets. These results are proof-of-principle for the delivery of gel-isolated bioactive proteins into cultured cells and suggest new ways for experimental protein therapy and for studying protein-protein interactions using gel-isolated protein. [source]


Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides

FEBS JOURNAL, Issue 22 2009
Pierre Nicolas
There is widespread acceptance that cationic antimicrobial peptides, apart from their membrane-permeabilizing/disrupting properties, also operate through interactions with intracellular targets, or disruption of key cellular processes. Examples of intracellular activity include inhibition of DNA and protein synthesis, inhibition of chaperone-assisted protein folding and enzymatic activity, and inhibition of cytoplasmic membrane septum formation and cell wall synthesis. The purpose of this minireview is to question some widely held views about intracellular-targeting antimicrobial peptides. In particular, I focus on the relative contributions of intracellular targeting and membrane disruption to the overall killing strategy of antimicrobial peptides, as well as on mechanisms whereby some peptides are able to translocate spontaneously across the plasma membrane. Currently, there are no more than three peptides that have been convincingly demonstrated to enter microbial cells without the involvement of stereospecific interactions with a receptor/docking molecule and, once in the cell, to interfere with cellular functions. From the limited data currently available, it seems unlikely that this property, which is isolated in particular peptide families, is also shared by the hundreds of naturally occurring antimicrobial peptides that differ in length, amino acid composition, sequence, hydrophobicity, amphipathicity, and membrane-bound conformation. Microbial cell entry and/or membrane damage associated with membrane phase/transient pore or long-lived transitions could be a feature common to intracellular-targeting antimicrobial peptides and mammalian cell-penetrating peptides that have an overrepresentation of one or two amino acids, i.e. Trp and Pro, His, or Arg. Differences in membrane lipid composition, as well as differential lipid recruitment by peptides, may provide a basis for microbial cell killing on one hand, and mammalian cell passage on the other. [source]


Impact of cyclins E, neutrophil elastase and proteinase 3 expression levels on clinical outcome in primary breast cancer patients,

INTERNATIONAL JOURNAL OF CANCER, Issue 11 2006
Christine Desmedt
Abstract Uncontrolled cell proliferation is one of the hallmarks of cancer and the transition from the G1 to S phase is the most commonly reported cell cycle abnormality in tumors. It has been shown that the oncogenic activity of G1 cyclin E (CCNE) can be amplified by generating hyperactive low molecular weight forms (LMW) through elastase-mediated proteolytic processing. Neutrophil elastase (NE) and proteinase 3 (PR3) are 2 proteases that are aberrantly expressed in breast cancer cells and seem to be involved in cell proliferation. In this study, we evaluated the effect of the expression of these 2 proteases in addition to 2 potential intracellular targets of NE (CCNE1 and CCNE2) on clinical outcome in a population of 205 primary breast cancer patients. By univariate analysis, CCNE1, CCNE2, estrogen receptor and grade significantly predicted relapse free interval (RFI). NE and PR3 did not achieve statistical significance. In a multivariate analysis, elevated CCNE2 [hazard ratio (HR) 2.10, p = 0.008] predicted shorter RFI. In subgroup analyses of the tamoxifen-only treated patients, high CCNE1 levels predicted treatment resistance, while high levels of CCNE2 were associated with poor RFI in untreated patients. Investigation of the relationship between CCNE1, CCNE2 and NE did not show any impact on RFI. To conclude, this study was the first to evaluate these markers at the mRNA level by RT-PCR in a series of primary breast cancer patients, and our results confirmed the impact of high CCNE levels on clinical outcome in systemically untreated and of CCNE1 in tamoxifen-only treated early breast cancer patients. © 2006 Wiley-Liss, Inc. [source]


Multiphoton microscopy in life sciences

JOURNAL OF MICROSCOPY, Issue 2 2000
K. König
Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm,2 to GW cm,2, which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi-gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non-invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth-resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non-invasive fluorophore loading into single living plant cells. Non-destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis-like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two-photon excitation process rather than a one-photon or three-photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two-photon vital cell studies. In labelled cells, additional phototoxic effects may occur via photodynamic action. This has been demonstrated for aminolevulinic acid-induced protoporphyrin IX and other porphyrin sensitizers in cells. When the light intensity in NIR microscopes is increased to TW cm,2 levels, highly localized optical breakdown and plasma formation do occur. These femtosecond NIR laser microscopes can also be used as novel ultraprecise nanosurgical tools with cut sizes between 100 nm and 300 nm. Using the versatile nanoscalpel, intracellular dissection of chromosomes within living cells can be performed without perturbing the outer cell membrane. Moreover, cells remain alive. Non-invasive NIR laser surgery within a living cell or within an organelle is therefore possible. [source]


The role of plant defence proteins in fungal pathogenesis

MOLECULAR PLANT PATHOLOGY, Issue 5 2007
RICARDO B. FERREIRA
SUMMARY It is becoming increasingly evident that a plant,pathogen interaction may be compared to an open warfare, whose major weapons are proteins synthesized by both organisms. These weapons were gradually developed in what must have been a multimillion-year evolutionary game of ping-pong. The outcome of each battle results in the establishment of resistance or pathogenesis. The plethora of resistance mechanisms exhibited by plants may be grouped into constitutive and inducible, and range from morphological to structural and chemical defences. Most of these mechanisms are defensive, exhibiting a passive role, but some are highly active against pathogens, using as major targets the fungal cell wall, the plasma membrane or intracellular targets. A considerable overlap exists between pathogenesis-related (PR) proteins and antifungal proteins. However, many of the now considered 17 families of PR proteins do not present any known role as antipathogen activity, whereas among the 13 classes of antifungal proteins, most are not PR proteins. Discovery of novel antifungal proteins and peptides continues at a rapid pace. In their long coevolution with plants, phytopathogens have evolved ways to avoid or circumvent the plant defence weaponry. These include protection of fungal structures from plant defence reactions, inhibition of elicitor-induced plant defence responses and suppression of plant defences. A detailed understanding of the molecular events that take place during a plant,pathogen interaction is an essential goal for disease control in the future. [source]


,Smart' delivery systems for biomolecular therapeutics

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 3 2005
PS Stayton
Structured Abstract Authors ,, Stayton PS, El-Sayed MEH, Murthy N, Bulmus V, Lackey C, Cheung C, Hoffman AS Objective ,, There is a strong need for drug delivery systems that can deliver biological signals from biomaterials and tissue engineering scaffolds, and a particular need for new delivery systems that can efficiently deliver biomolecules to intracellular targets. Viruses and pathogens have evolved potent molecular machinery that sense the lowered pH gradient of the endosomal compartment and become activated to destabilize the endosomal membrane, thereby enhancing protein or DNA transport to the cytoplasmic compartment. A key feature of many of these biological delivery systems is that they are reversible, so that the delivery systems are not directly toxic. These delivery systems have the ability to change their structural and functional properties and thus display remarkable ,smart' material properties. The objective of this presentation is to review the initial development of smart polymeric carriers that mimic these biological delivery systems and combine similar pH-sensitive, membrane-destabilizing activity for the delivery of therapeutic biomolecules. Design ,, We have developed new ,smart' polymeric carriers to more effectively deliver and broaden the available types of biomolecular therapeutics. The polymers are hydrophilic and stealth-like at physiological pH, but become membrane-destabilizing after uptake into the endosomal compartment where they enhance the release of therapeutic cargo into the cytoplasm. They can be designed to provide a range of pH profiles and membrane-destabilizing activities, allowing their molecular properties to be matched to specific drugs and loading ranges. A versatile set of linker chemistries is available to provide degradable conjugation sites for proteins, nucleic acids, and/or targeting moieties. Results ,, The physical properties of several pH-responsive polymers were examined. The activity and pH profile can be manipulated by controlling the length of hydrophobic alkyl segments. The delivery of poly(propyl acrylic acid) (PPAA)-containing lipoplexes significantly enhanced wound healing through the interconnected effects of altered extracellular matrix organization and greater vascularization. PPAA has also been shown to enhance cytoplasmic delivery of a model protein therapeutic. Polymeric carriers displaying pH-sensitive, membrane-destabilizing activity were also examined. The pH profile is controlled by the choice of the alkylacrylic acid monomer and by the ratio of the carboxylate-containing alkylacrylic acid monomer to alkylacrylate monomer. The membrane destabilizing activity is controlled by the lengths of the alkyl segment on the alkylacrylic acid monomer and the alkylacrylate monomer, as well as by their ratio in the final polymer chains. Conclusion ,, The molecular mechanisms that proteins use to sense and destabilize provide interesting paradigms for the development of new polymeric delivery systems that mimic biological strategies for promoting the intracellular delivery of biomolecular drugs. The key feature of these polymers is their ability to directly enhance the intracellular delivery of proteins and DNA, by destabilizing biological membranes in response to vesicular compartment pH changes. The ability to deliver a wide variety of protein and nucleic acid drugs to intracellular compartments from tissue engineering and regenerative scaffolds could greatly enhance control of important processes such as inflammation, angiogenesis, and biomineralization. [source]


The chemistry behind redox regulation with a focus on sulphur redox systems

PHYSIOLOGIA PLANTARUM, Issue 3 2008
Claus Jacob
Sulphur metabolism in plants provides a wealth of natural products, including several chemically unusual substances, such as thiosulphinates, polysulphides and isothiocyanates. Many of these reactive sulphur species (RSS) exhibit a distinct redox behaviour in vitro, which translates into a rather interesting biological activity in vivo, such as antibiotic, fungicidal, pesticidal or anticancer activity. While the molecular basis for such activity has long remained obscure, research into sulphur-based redox systems during the past 5,10 years has achieved a better knowledge of the in vitro properties of RSS and has led to an improved understanding of their impact on intracellular redox signalling and control pathways in living cells. It has become apparent that the redox chameleon sulphur occurs in biological systems in about 10 different oxidation states, which give rise to an extensive and complicated network of sulphur-based redox events. Together, natural sulphur products from plants and their intracellular targets provide the basis for innovative design of novel antibiotics, fungicides, pesticides and anticancer agents. [source]


Copper treatment activates mitogen-activated protein kinase signalling in rice

PHYSIOLOGIA PLANTARUM, Issue 3 2003
Chuan-Ming Yeh
It is well known that mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been shown that MAPKs play a role in the signalling of biotic and abiotic stresses. To characterize signalling pathways involved in heavy metal-induced stress responses, we examine whether plant MAPKs are also involved in this process. The analyses of mRNA levels of OsMAPK genes have shown that only OsMAPK2 mRNA transcripts increased within 12 h upon CuCl2 treatment in suspension cells and roots. An in-gel kinase assay revealed that three protein kinases, approximate 42, 50, and 64-kDa, were activated by CuCl2 treatments. The approximate 42-kDa protein kinase displayed MAPK properties. Antioxidant, GSH, prevented copper-induced kinase activity. Furthermore, we found that rice roots underwent a rapid cell death upon this copper treatment. The copper-induced cell death of rice roots was partially blocked by MAPK kinase inhibitor, PD98059. These results suggest that the MAPK cascades may function in the plant heavy metal induced-signalling pathway. [source]


Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive

PHYSIOLOGIA PLANTARUM, Issue 4 2002
Hao-Jen Huang
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, there is evidence for MAPKs playing a role in the signalling of abiotic stresses, pathogens, plant hormones, and cell cycle cues. The large number and divergence of plant MAPKs indicates that this ancient mechanism of signal transduction is extensively used in plants. However, there have been no reports of classical MAPK module in rice. In this report, we have isolated a MAPK from rice (Oryza sativa) termed OsMAPK2. The cloned cDNA is 1457 nucleotides long and the deduced amino acid sequence comprised 369 amino acid residues. Sequence analysis revealed that the predicted amino acid sequence is 72% identical to tobacco wound-induced protein kinase (WIPK). Southern analysis suggested a single OsMAPK2 gene in rice. Analysis at the mRNA level has shown that OsMAPK2 is expressed in all plant organs and high relative amounts of OsMAPK2 were detected in the mature panicles in comparison with in the immature panicles. In suspension-cultured cells, the OsMAPK2 mRNA transcript increased markedly upon temperature downshift from 26°C to 4°C and sucrose starvation. In contrast, the OsMAPK2 mRNA level rapidly declined in rice cell challenged by high temperature. A similarly rapid response of OsMAPK2 was observed in stress-treated seedlings, demonstrating that response of the MAPK pathway occurs also in intact plants. These results suggest that this OsMAPK2 may function in the stress-signalling pathway as well as panicle development in rice. [source]


Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography

BIOTECHNOLOGY JOURNAL, Issue 1 2007
Damien Guiffant
Abstract Efforts to characterize small molecular weight chemical inhibitors of pharmacological interest tend to identify molecules with high efficiency and selectivity, to meet the two criteria required for the clinical development of a drug: efficacy and harmlessness. Drug candidates are expected to inhibit efficiently the target they have been optimized against (for example, a particular type of protein kinase). These hits are also designed to not interfere (or as little as possible) with the activity of other cellular enzymes/proteins to reduce undesired side effects. Here we discuss the use of immobilized drugs as affinity chromatography matrices to purify and identify their bona fide intracellular targets. This method not only allows the systematic investigation of the selectivity of pharmacological compounds but also the anticipation of their putative adverse effects. [source]


Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2002
Michael J Mihm
Cardiac peroxynitrite and protein nitration are increased during doxorubicin cardiotoxicity, but the intracellular targets and functional consequences have not been defined. We investigated the intracellular distribution of protein nitration during doxorubicin cardiotoxicity in mice. Following in vivo cardiac function assessments by echocardiography, cardiac tissues were prepared for immunohistochemistry and electron microscopy 5 days after doxorubicin (20 mg kg,1) or vehicle control. Increased cardiac 3-nitrotyrosine was observed using light microscopy in doxorubicin treated animals. Immunogold electron microscopy (55,000×) revealed increased myofibrillar and mitochondrial 3-nitrotyrosine levels following doxorubicin, but cellular 3-nitrotyrosine density was 2 fold higher in myofibrils. We therefore investigated the actions of peroxynitrite on intact cardiac contractile apparatus. Skinned ventricular trabeculae were exposed to physiologically relevant peroxynitrite concentrations (50 or 300 nM) for 1 h, then Ca2+ induced contractile responses were measured in the presence of ATP (4 mM) or phosphocreatine (12 mM) as high energy phosphate supplier. ATP maximal force generation was unaltered after 50 nM peroxynitrite, but phosphocreatine/ATP response was reduced (0.99±0.63 vs 1.59±0.11), suggesting selective inactivation of myofibrillar creatine kinase (MM-CK). Reduction of ATP maximal force was observed at 300 nM peroxynitrite and phosphocreatine/ATP response was further reduced (0.64±0.30). Western blotting showed concentration dependent nitration of MM-CK in treated trabeculae. Similarly, cardiac tissues from doxorubicin treated mice demonstrated increased nitration and inactivation of MM-CK compared to controls. These results demonstrate that peroxynitrite-related protein nitration are mechanistic events in doxorubicin cardiomyopathy and that the cardiac myofibril is an important oxidative target in this setting. Furthermore, MM-CK may be a uniquely vulnerable target to peroxynitrite in vivo. British Journal of Pharmacology (2002) 135, 581,588; doi:10.1038/sj.bjp.0704495 [source]


Cellular Internalization of Water-Soluble Helical Aromatic Amide Foldamers

CHEMBIOCHEM, Issue 12 2010
Jone Iriondo-Alberdi Dr.
Abstract The intracellular transport of drugs and therapeutics represents one of the most exciting and challenging areas at the interface of chemistry, biology, and medicine. Most of the effort in this field so far has been devoted to the development of peptide-based delivery systems that can translocate therapeutic agents into their intracellular targets. More recently, the use of bioinspired non-natural foldamers has resulted in the successful delivery of cargo molecules, which possess a wide range of sizes and physicochemical properties across the cell membrane. We report herein the synthesis of aromatic amide foldamers and their biological evaluation as cell-penetrating agents. By using a well-established synthetic route, a series of fluorescein-labeled cationic aryl amide conjugates has been constructed, and their cellular uptake into various human cell lines has been analyzed by flow cytometry and fluorescence microscopy. The assays revealed that longer oligomers achieve greater cellular translocation, with octamer Q8 proving to be a remarkable vehicle for all three cell lines. Biological studies have also indicated that these helices are biocompatible, thus showing promise in their application as cell-penetrating agents and as vehicles to deliver biologically active molecules into cells. [source]