Intracellular Symbionts (intracellular + symbiont)

Distribution by Scientific Domains


Selected Abstracts


Yeast of the oral cavity is the reservoir of Heliobacter pylori

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 6 2008
Ali-Hatef Salmanian
Background:, Frequent occurrence of Helicobacter pylori in the human gastrointestinal tract and its persistence due to unsuccessful antimicrobial therapy might be related to a stage in the life cycle of H. pylori in which the bacterium establishes itself as an intracellular symbiont in yeast. In this study, occurrence of non-culturable H. pylori in the oral yeast was assessed by targeting vacuolating cytotoxin A (vacA s1s2) and ureAB genes in the total DNAs of yeasts. Methods:, DNAs were extracted from 13 oral yeasts in which bacterium-like bodies, suspected to be H. pylori, were observed microscopically. Primers were recruited to amplify vacA s1s2 and ureAB genes. DNAs from H. pylori and E. coli were used as controls. The amplicons from one yeast and H. pylori were sequenced. Yeasts were identified as Candida albicans. Results:, Fragments of vacA s1s2 and ureAB genes were amplified from 13 yeasts. The size of PCR products was 286 bp for vacA s1s2 gene and 406 bp for ureAB gene. Similar bands were obtained from the control H. pylori, and the results for E. coli were negative. The data from sequencing of PCR products showed about 98% homology between the genes amplified from yeast and those from H. pylori. Conclusions:, The results of this study showed the intracellular occurrence of H. pylori in yeast. This endosymbiotic relationship might explain the persistence of H. pylori in the oral cavity, the consequence of which could be reinoculation of the stomach by the bacterium and spread of infection among human populations. [source]


Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila

MOLECULAR MICROBIOLOGY, Issue 6 2006
Ilka Haferkamp
Summary Protochlamydia amoebophila UWE25 is related to the Chlamydiaceae comprising major pathogens of humans, but thrives as obligate intracellular symbiont in the protozoan host Acanthamoeba sp. The genome of P. amoebophila encodes five paralogous carrier proteins belonging to the nucleotide transporter (NTT) family. Here we report on three P. amoebophila NTT isoforms, PamNTT2, PamNTT3 and PamNTT5, which possess several conserved amino acid residues known to be critical for nucleotide transport. We demonstrated that these carrier proteins are able to transport nucleotides, although substrate specificities and mode of transport differ in an unexpected manner and are unique among known NTTs. PamNTT2 is a counter exchange transporter exhibiting submillimolar apparent affinities for all four RNA nucleotides, PamNTT3 catalyses an unidirectional proton-coupled transport confined to UTP, whereas PamNTT5 mediates a proton-energized GTP and ATP import. All NTT genes of P. amoebophila are transcribed during intracellular multiplication in acanthamoebae. The biochemical characterization of all five NTT proteins from P. amoebophila in this and previous studies uncovered that these metabolically impaired bacteria are intimately connected with their host cell's metabolism in a surprisingly complex manner. [source]


Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts

MOLECULAR ECOLOGY, Issue 6 2007
S. NODA
Abstract A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms , termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut. [source]


Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition

NEW PHYTOLOGIST, Issue 3 2007
Terrence J. Sullivan
Summary ,,Plants have multiple strategies to deal with herbivory, ranging from chemical or physical defenses to tolerating damage and allocating resources for regrowth. Grasses usually tolerate herbivory, but for some cool-season grasses, their strategy may depend upon their interactions with intracellular symbionts. Neotyphodium endophytes are common symbionts in pooid grasses, and, for some host species, they provide chemical defenses against both vertebrate and invertebrate herbivores. ,,Here, it was tested whether defenses provided by Neotyphodium coenophialum in Lolium arundinaceum (tall fescue) are inducible by both mechanical damage and herbivory from an invertebrate herbivore, Spodoptera frugiperda (fall armyworm), via a bioassay and by quantifying mRNA expression for lolC, a gene required for loline biosysnthesis. ,,Both mechanical and herbivore damage had a negative effect on the reproduction of a subsequent herbivore, Rhopalosiphum padi (bird cherry-oat aphid), and herbivore damage caused an up-regulation of lolC. Uninfected grass hosts also had significantly higher foliar N% and lower C : N ratio compared with infected hosts, suggesting greater allocation to growth rather than defense. ,,For L. arundinaceum, N. coenophialum appears to switch its host's defensive strategy from tolerance via compensation to resistance. [source]


Amino acid budgets in three aphid species using the same host plant

PHYSIOLOGICAL ENTOMOLOGY, Issue 3 2001
J. P. Sandström
Abstract. Nutrient provisioning in aphids depends both on the composition of ingested phloem sap and on the biosynthetic capabilities of the aphid and its intracellular symbionts. Amino acid budgets for three aphid species, Rhopalosiphum padi (L.), Schizaphis graminum (Rondani) and Diuraphis noxia (Mordvilko), were compared on a single host plant species, wheat Triticum aestivum L. Ingestion of amino acids from phloem, elimination of amino acids in honeydew, and the content of amino acids in aphids tissue were measured. From these values, ingestion rates were estimated and compared to honeydew and to estimated composition of aphid proteins. Ingestion rate was lowest in D. noxia due to low growth rate and low honeydew production; intermediate in S. graminum due to higher growth rate and intermediate honeydew production; and highest in R. padi, which had the highest rates for both variables. Both D. noxia and S. graminum induced increases in the amino acid content of ingested phloem. These changes in phloem content, combined with differences in ingestion rates, resulted in large differences among aphids in estimated rates of ingestion of individual amino acids. In honeydew, most essential amino acids were found in low amounts compared with the amounts ingested, especially for methionine and lysine. A few amino acids (arginine, cystine, histidine and tryptophan) were more abundant in honeydew of some aphids, suggesting oversupply. Aphid species differed in the composition of free amino acids in tissue but showed very similar composition in protein, implying similar requirements among the aphids. In R. padi and D. noxia, most essential amino acids were ingested in amounts insufficient for growth, implying dependence on symbiont provisioning. In S. graminum, most amino acids were ingested in amounts apparently sufficient for growth. [source]