Intracellular Stores (intracellular + store)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


The Cl, channel blocker niflumic acid releases Ca2+ from an intracellular store in rat pulmonary artery smooth muscle cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2003
Stuart F Cruickshank
The effect of the Cl, channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4,-diisothiocyanatostilbene-2,2,-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl, channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl, channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl, channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR. British Journal of Pharmacology (2003) 140, 1442,1450. doi:10.1038/sj.bjp.0705571 [source]


Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cells

ACTA PHYSIOLOGICA, Issue 1 2009
J. Hartmann
Abstract The metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian cerebellum. These G-protein-coupled receptors are abundantly expressed in the principle cerebellar cells, namely the Purkinje neurones. Under physiological conditions, mGluR1s are activated during repetitive activity of both afferent glutamatergic synaptic inputs provided by the climbing and parallel fibres respectively. Unlike the common ionotropic glutamate receptors that underlie rapid synaptic excitation, mGluR1s produce a complex post-synaptic response consisting of a Ca2+ -release signal from intracellular stores and a slow excitatory post-synaptic potential. While it is well established that the mGluR1-dependent Ca2+ -release signal from intracellular stores involves the activation of inositol-trisphosphate receptors, the mechanisms underlying the slow synaptic excitation remained unclear. Here we will review recent evidence indicating an essential role of C-type transient receptor potential (TRPC) cation channels, especially that of the subunit TRPC3, for the generation of the mGluR1-dependent synaptic current. For the signalling pathways underlying both, Ca2+ -release from intracellular stores and the slow synaptic potential, we present current knowledge about the activators, downstream effectors and possible roles for mGluR1-dependent signalling in Purkinje neurones. [source]


Calcium handling in afferent arterioles

ACTA PHYSIOLOGICA, Issue 4 2004
M. Salomonsson
Abstract The cytosolic intracellular calcium concentration ([Ca2+]i) is a major determining factor in the vascular smooth muscle tone. In the afferent arteriole it has been shown that agonists utilizing G-protein coupled receptors recruit Ca2+ via release from intracellular stores and entry via pathways in the plasma membrane. The relative importances of entry vs. mobilization seem to differ between different agonists, species and preparations. The entry pathway might include different types of voltage sensitive Ca2+ channels located in the plasmalemma such as dihydropyridine sensitive L-type channels, T-type channels and P/Q channels. A role for non-voltage sensitive entry pathways has also been suggested. The importance of voltage sensitive Ca2+ channels in the control of the tone of the afferent arteriole (and thus in the control of renal function and whole body control of extracellular fluid volume and blood pressure) sheds light on the control of the membrane potential of afferent arteriolar smooth muscle cells. Thus, K+ and Cl, channels are of importance in their role as major determinants of membrane potential. Some studies suggest a role for calcium-activated chloride (ClCa) channels in the renal vasoconstriction elicited by agonists. Other investigators have found evidence for several types of K+ channels in the regulation of the afferent arteriolar tone. The available literature in this field regarding afferent arterioles is, however, relatively sparse and not conclusive. This review is an attempt to summarize the results obtained by others and ourselves in the field of agonist induced afferent arteriolar Ca2+ recruitment, with special emphasis on the control of voltage sensitive Ca2+ entry. Outline of the Manuscript: This manuscript is structured as follows: it begins with an introduction where the general role for [Ca2+]i as a key factor in the regulation of the tone of vascular smooth muscles (VSMC) is detailed. In this section there is an emphasis is on observations that could be attributed to afferent arteriolar function. We then investigate the literature and describe our results regarding the relative roles for Ca2+ entry and intracellular release in afferent arterioles in response to vasoactive agents, with the focus on noradrenalin (NA) and angiotensin II (Ang II). Finally, we examine the role of ion channels (i.e. K+ and Cl, channels) for the membrane potential, and thus activation of voltage sensitive Ca2+ channels. [source]


Two distinct P2Y receptors are involved in purine- and pyrimidine-evoked Ca2+ elevation in mammalian brain astrocytic cultures

DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
Chiara Bolego
Abstract ATP and 2-methyl-thio-ATP (2-Me-SATP) increase cytosolic calcium concentrations ([Ca2+]i) in rat striatal astrocytes (Centemeri et al. [1997] Br J Pharmacol 121:1700,1706). The aim of the present study was to: (1) characterize pyrimidine-induced [Ca2+]i increases in the same experimental system, and (2) try to identify the multiple P2Y receptor subtypes mediating Ca2+ mobilization. UDP and UTP triggered a concentration-dependent [Ca2+]i elevation (EC50s = 0.58 ,M ± 0.4 and 31 ,M ± 6, respectively). Pyrimidine-evoked [Ca2+]i elevation was solely due to mobilization from intracellular stores, because: (1) removing calcium from extracellular medium or (2) blocking its influx with Ni2+ did not modify UTP responses; (3) the store-depleting agent thapsigargin completely abolished UTP-evoked [Ca2+]i increments. Guanosine-5,-O-(2-thiodiphosphate) partially inhibited the UTP response, whereas pertussis toxin (PTx) had no effect. The phospholipase C inhibitor U-73122 significantly reduced the UTP-evoked [Ca2+]i rise. Computer-assisted analysis indicated that the UTP and UDP responses are mediated by a single receptor, while ATP and 2-Me-SATP interact with two distinct receptors. The selective P2Y1 receptor antagonist MRS2179 abolished the ATP higher potency component. Sequential challenges with the same nucleotides resulted in almost complete homologous desensitization. Pre-exposure to UTP lowered the subsequent responses to either ATP or 2-Me-SATP. Maximally active concentrations of UTP and ATP were not additive. In conclusion, [Ca2+]i elevation in astrocytes by purines and pyrimidines is mediated by two distinct P2Y receptors, likely the P2Y1 and P2Y6 subtypes. Drug Dev. Res. 52:122,132, 2001. © 2001 Wiley-Liss, Inc. [source]


Discovery and recognition of purine receptor subtypes on platelets

DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
Susanna M.O. HouraniArticle first published online: 9 MAY 200
Abstract The effects of purines on platelets have been known since the 1960s, when Born demonstrated aggregation induced by ADP and its inhibition by adenosine and by ATP. The inhibition by adenosine is not specific for ADP, and adenosine acts at a separate receptor to stimulate adenylate cyclase, which has an inhibitory effect on platelet function. Studies using selective agonists and antagonists have shown that the platelet receptor is of the A2A subtype and this has been confirmed using A2A knockout mice. The situation with ADP is more complex, and there has been controversy about the number of ADP receptors on platelets. ADP causes shape change, aggregation, mobilisation of calcium from intracellular stores, rapid calcium influx, and inhibition of adenylate cyclase, and the relationship between these is becoming clearer. Two cloned P2 receptors have been detected on platelets, P2X1 and P2Y1, and a third P2Y receptor is thought to exist. The P2X1 receptor is responsible for the rapid calcium influx and can be activated by ATP as well as by ADP, but is likely to be desensitised under normal experimental conditions and its pathophysiological role is uncertain. The P2Y1 receptor is responsible for calcium mobilisation, shape change, and the initiation of aggregation, and these responses are abolished in P2Y1 knockout mice, while the other P2Y receptor is responsible for inhibition of adenylate cyclase and is required for full aggregation. ATP is a competitive antagonist at both these P2Y receptors, while some nucleotide analogues can discriminate between them. Drug Dev. Res. 52:140,149, 2001. © 2001 Wiley-Liss, Inc. [source]


Retina expresses a novel variant of the ryanodine receptor

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
Varda Shoshan-Barmatz
Abstract Calcium released from intracellular stores via the ryanodine receptor (RyR) mediates a variety of signalling processes. We previously showed that retina expresses the three known types of RyR, but retinal membrane preparations exhibit unique characteristics such as Ca2+ -independent [3H]ryanodine-binding and inhibition by caffeine. We have heretofore suggested that the major retinal RyR isoform is novel. The present study aimed to identify this receptor isoform and to localize RyR in mammalian retina. Immunoblotting with specific and pan-antibodies showed that the major retinal RyR has a mobility similar to that of RyR2 or RyR3. Real-time PCR revealed that the major type is RyR2, and RT-PCR followed by sequencing showed a transcript that encodes a protein with ~ 99% identity to RyR2, yet lacking two regions of seven and 12 amino acids and including an additional insertion of eight amino acids. An antibody against RyR2 localized this type to somas and primary dendrites of most retinal neurons. An antibody against RyR1 localized RyR to most somas but also revealed staining in photoreceptor outer segments, concentrated on the disk membranes at their rim. The ryanodine-binding properties and the electrophoretic mobility of RyR from the outer segments were similar to those of the whole retinal preparation. The results thus identify a novel variant of RyR2 which can contribute to regulating photoreceptor Ca2+ concentrations. The restricted localization of the outer segment RyR to the disk rim suggests that its activation mechanism involves a coupling between retinal RyR and the cGMP-gated channel. [source]


IP3 receptor in the hair cells of frog semicircular canal and its possible functional role

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006
Maria Lisa Rossi
Abstract The presence and functional role of inositol trisphosphate receptors (IP3R) was investigated by electrophysiology and immunohistochemistry in hair cells from the frog semicircular canal. Intracellular recordings were performed from single fibres of the posterior canal in the isolated, intact frog labyrinth, at rest and during rotation, in the presence of IP3 receptor inhibitors and drugs known to produce Ca2+ release from the internal stores or to increase IP3 production. Hair cell immunolabelling for IP3 receptor was performed by standard procedures. The drug 2-aminoethoxydiphenyl borate (2APB), an IP3 receptor inhibitor, produced a marked decrease of mEPSP and spike frequency at low concentration (0.1 mm), without affecting mEPSP size or time course. At high concentration (1 mm), 2APB is reported to block the sarcoplasmic-endoplasmic reticulum Ca2+ -ATPase (SERCA pump) and increase [Ca2+]i; at the labyrinthine cytoneural junction, it greatly enhanced the resting and mechanically evoked sensory discharge frequency. The selective agonist of group I metabotropic glutamate receptors (RS)-3,5-dihydroxyphenylglycine (DHPG, 0.6 mm), produced a transient increase in resting mEPSP and spike frequency at the cytoneural junction, with no effects on mEPSP shape or amplitude. Pretreatment with cyclopiazonic acid (CPA, 0.1 mm), a SERCA pump inhibitor, prevented the facilitatory effect of both 2APB and DHPG, suggesting a link between Ca2+ release from intracellular stores and quantal emission. Consistently, diffuse immunoreactivity for IP3 receptors was observed in posterior canal hair cells. Our results indicate the presence and a possibly relevant functional role of IP3-sensitive stores in controlling [Ca2+]i and modulating the vestibular discharge. [source]


Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2003
Akinori Kuruma
Abstract Ca2+ and Na+ play important roles in neurons, such as in synaptic plasticity. Their concentrations in neurons change dynamically in response to synaptic inputs, but their kinetics have not been compared directly. Here, we show the mechanisms and dynamics of Ca2+ and Na+ transients by simultaneous monitoring in Purkinje cell dendrites in mouse cerebellar slices. High frequency parallel fibre stimulation (50 Hz, 3,50-times) depolarized Purkinje cells, and Ca2+ transients were observed at the anatomically expected sites. The magnitude of the Ca2+ transients increased linearly with increasing numbers of parallel fibre inputs. With 50 stimuli, Ca2+ transients lasted for seconds, and the peak [Ca2+] reached ,100 µm, which was much higher than that reported previously, although it was still confined to a part of the dendrite. In contrast, Na+ transients were sustained for tens of seconds and diffused away from the stimulated site. Pharmacological interventions revealed that Na+ influx through ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and Ca2+ influx through P-type Ca channels were essential players, that AMPA receptors did not operate as a Ca2+ influx pathway and that Ca2+ release from intracellular stores through inositol trisphosphate receptors or ryanodine receptors did not contribute greatly to the large Ca2+ transients. [source]


Multiple P2 Receptors Contribute to a Transient Increase in Intracellular Ca2+ Concentration in Atp-Stimulated Rat Brown Adipocytes

EXPERIMENTAL PHYSIOLOGY, Issue 6 2002
Mariko Omatsu-Kanbe
Extracellular ATP in micromolar concentrations evokes a transient elevation in intracellular free Ca2+ concentration ([Ca2+]i), which arises primarily from a release of Ca2+ from intracellular stores in rat brown adipocytes. We investigated the mechanisms underlying this transient nature of [Ca2+]i elevation during exposure to ATP by using fura-2 fluorescence measurements together with the P2 receptor antagonists pyridoxal-phosphate-6-azophenyl-2,,4,-disulfonic acid (PPADS) and suramin. Extracellular ATP (10 ,M) almost completely depressed the thapsigargin (100 nM)-evoked [Ca2+]i elevation mediated through store-operated Ca2+ entry. The inhibitory effect of ATP was antagonized by PPADS with IC50 of 0.7 ,M. In the presence of PPADS at concentrations of more than 5 ,M, the ATP-induced [Ca2+]i elevation became sustained during the entire duration of the agonist application, although the magnitude of the sustained [Ca2+]i elevation was reduced in a concentration-dependent manner by PPADS with an IC50 of 200 ,M. In contrast, the ATP-induced [Ca2+]i elevation was blocked by suramin in a concentration range similar to that required to antagonize the inhibitory effect of ATP on the store-operated pathway. These results suggest that the [Ca2+]i responses to extracellular ATP in rat brown adipocytes are mediated through the activation of at least two distinct P2 receptors exhibiting different sensitivities to PPADS but similar sensitivities to suramin. Extracellular ATP stimulates the PPADS-resistant P2 receptor to mobilize intracellular Ca2+ stores, which is probably followed by the activation of store-operated Ca2+ entry. Extracellular ATP, however, would inhibit this Ca2+ entry process through the stimulation of the PPADS-sensitive P2-receptor, which may underlie the transient nature of [Ca2+]i elevation in response to extracellular ATP. [source]


The Secretory Response of the Rat Colon to the Flavonol Quercetin is Dependent on Ca2+ -Calmodulin

EXPERIMENTAL PHYSIOLOGY, Issue 3 2000
R. Cermak
The dietary flavonol quercetin induces chloride secretion in rat intestine. To clarify the underlying mechanisms, experiments were performed in Ussing chambers with tissue from rat proximal and distal colon. Quercetin induced an increase in short-circuit current (Isc), which was largely independent of submucosal neurons, as it was not affected by the neurotoxin tetrodotoxin. The effect of quercetin was blocked by the calmodulin antagonists trifluoperazine and ophiobolin A and was diminished by a blocker of Ca2+ release from intracellular stores (TMB-8), whereas the muscarinic receptor antagonist atropine was ineffective. The quercetin-induced Isc was abolished in Ca2+ -free solution. The flavonol was able to further increase Isc after maximal stimulation of the cAMP pathway by forskolin. The Isc increase by the flavonol was differently affected by two analogous phosphodiesterase inhibitors. Whereas 3-isobutyl-1-methylxanthine (IBMX) antagonized the effect of quercetin, 8-methoxymethyl-IBMX had no effect. Both phosphodiesterase inhibitors similarly influenced the Isc increase induced by forskolin. These results indicate that the chloride secretion induced by quercetin in rat colon depends on Ca2+ and calmodulin. The cAMP pathway and inhibition of phosphodiesterase appear not to be responsible for the secretory activity of the flavonol. [source]


Ca2+ - and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: From microtubules to the plasma membrane

GLIA, Issue 12 2009
J. W. Ou
Abstract Large-conductance, voltage- and Ca2+ -activated K+ channels (MaxiK) are broadly expressed ion channels minimally assembled by four pore-forming ,-subunits (MaxiK,) and typically observed as plasma membrane proteins in various cell types. In murine astrocyte primary cultures, we show that MaxiK, is predominantly confined to the microtubule network. Distinct microtubule distribution of MaxiK, was visualized by three independent labeling approaches: (1) MaxiK,-specific antibodies, (2) expressed EGFP-labeled MaxiK,, and (3) fluorophore-conjugated iberiotoxin, a specific MaxiK pore-blocker. This MaxiK, association with microtubules was further confirmed by in vitro His-tag pulldown, co-immunoprecipitation from brain lysates, and microtubule depolymerization experiments. Changes in intracellular Ca2+ elicited by general pharmacological agents, caffeine or thapsigargin, resulted in increased MaxiK, labeling at the plasma membrane. More notably, U46619, an analog of thromboxane A2 (TXA2), which triggers Ca2+ -release pathways and whose levels increase during cerebral hemorrhage/trauma, also elicits a similar increase in MaxiK, surface labeling. Whole-cell patch clamp recordings of U46619-stimulated cells develop a ,3-fold increase in current amplitude indicating that TXA2 stimulation results in the recruitment of additional, functional MaxiK channels to the surface membrane. While microtubules are largely absent in mature astrocytes, immunohistochemistry results in brain slices show that cortical astrocytes in the newborn mouse (P1) exhibit a robust expression of microtubules that significantly colocalize with MaxiK,. The results of this study provide the novel insight that suggests that Ca2+ released from intracellular stores may play a key role in regulating the traffic of intracellular, microtubule-associated MaxiK, stores to the plasma membrane of developing murine astrocytes. © 2009 Wiley-Liss, Inc. [source]


Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium

GLIA, Issue 15 2008
Thomas Hassenklöver
Abstract Extracellular purines and pyrimidines are important signaling molecules acting via purinergic cell-surface receptors in neurons, glia, and glia-like cells such as sustentacular supporting cells (SCs) of the olfactory epithelium (OE). Here, we thoroughly characterize ATP-induced responses in SCs of the OE using functional Ca2+ imaging. The initial ATP-induced increase of the intracellular Ca2+ concentration [Ca2+]i always occurred in the apical part of SCs and subsequently propagated toward the basal lamina, indicating the occurrence of purinergic receptors in the apical part of SCs. The mean propagation velocity of the Ca2+ signal within SCs was 17.10 ± 1.02 ,m/s. ATP evoked increases in [Ca2+]i in both the presence and absence of extracellular Ca2+. Depletion of the intracellular Ca2+ stores abolished the responses. This shows that the ATP-induced [Ca2+]i increases were in large part, if not entirely, due to the activation of G protein-coupled receptors followed by Ca2+ mobilization from intracellular stores, suggesting an involvement of P2Y receptors. The order of potency of the applied purinergic agonists was UTP > ATP > ATP,S (with all others being only weakly active or inactive). The ATP-induced [Ca2+]i increases could be reduced by the purinergic antagonists PPADS and RB2, but not by suramin. Our findings suggest that extracellular nucleotides in the OE activate SCs via P2Y2/P2Y4 -like receptors and initiate a characteristic intraepithelial Ca2+ wave. © 2008 Wiley-Liss, Inc. [source]


Calcium signaling in invertebrate glial cells

GLIA, Issue 7 2006
Christian Lohr
Abstract Calcium signaling studies in invertebrate glial cells have been performed mainly in the nervous systems of the medicinal leech (Hirudo medicinalis) and the sphinx moth Manduca sexta. The main advantages of studing glial cells in invertebrate nervous systems are the large size of invertebrate glial cells and their easy accessibility for optical and electrophysiological recordings. Glial cells in both insects and annelids express voltage-gated calcium channels and, in the case of leech glial cells, calcium-permeable neurotransmitter receptors, which allow calcium influx as one major source for cytosolic calcium transients. Calcium release from intracellular stores can be induced by metabotropic receptor activation in leech glial cells, but appears to play a minor role in calcium signaling. In glial cells of the antennal lobe of Manduca, voltage-gated calcium signaling changes during postembryonic development and is essential for the migration of the glial cells, a key step in axon guidance and in stabilization of the glomerular structures that are characteristic of primary olfactory centers. © 2006 Wiley-Liss, Inc. [source]


Chlorotoxin-sensitive Ca2+ -activated Cl, channel in type R2 reactive astrocytes from adult rat brain

GLIA, Issue 4 2003
Stanislava Dalton
Abstract Astrocytes express four types of Cl, or anion channels, but Ca2+ -activated Cl, (ClCa) channels have not been described. We studied Cl, channels in a morphologically distinct subpopulation (, 5% of cells) of small (10,12 ,m, 11.8 ± 0.6 pF), phase-dark, GFAP-positive native reactive astrocytes (NRAs) freshly isolated from injured adult rat brains. Their resting potential, ,57.1 ± 4.0 mV, polarized to ,72.7 ± 4.5 mV with BAPTA-AM, an intracellular Ca2+ chelator, and depolarized to ,30.7 ± 6.1 mV with thapsigargin, which mobilizes Ca2+ from intracellular stores. With nystatin-perforated patch clamp, thapsigargin activated a current that reversed near the Cl, reversal potential, which was blocked by Cl, channel blockers, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and Zn2+, by I, (10 mM), and by chlorotoxin (EC50 = 47 nM). With conventional whole-cell clamp, NPPB- and Zn2+ -sensitive currents became larger with increasing [Ca2+]i (10, 150, 300 nM). Single-channel recordings of inside-out patches confirmed Ca2+ sensitivity of the channel and showed open-state conductances of 40, 80, 130, and 180 pS, and outside-out patches confirmed sensitivity to chlorotoxin. In primary culture, small phase-dark NRAs developed into small GFAP-positive bipolar cells with chlorotoxin-sensitive ClCa channels. Imaging with biotinylated chlorotoxin confirmed the presence of label in GFAP-positive cells from regions of brain injury, but not from uninjured brain. Chlorotoxin-tagged cells isolated by flow cytometry and cultured up to two passages exhibit positive labeling for GFAP and vimentin, but not for prolyl 4-hydroxylase (fibroblast), A2B5 (O2A progenitor), or OX-42 (microglia). Expression of a novel chlorotoxin-sensitive ClCa channel in a morphologically distinct subpopulation of NRAs distinguishes these cells as a new subtype of reactive astrocyte. GLIA 42:325,339, 2003. © 2003 Wiley-Liss, Inc. [source]


Secretin activation of the apical Na+ -dependent bile acid transporter is associated with cholehepatic shunting in rats,

HEPATOLOGY, Issue 5 2005
Gianfranco Alpini
The role of the cholangiocyte apical Na+ -dependent bile acid transporter (ASBT) in bile formation is unknown. Bile acid absorption by bile ducts results in cholehepatic shunting, a pathway that amplifies the canalicular osmotic effects of bile acids. We tested in isolated cholangiocytes if secretin enhances ASBT translocation to the apical membrane from latent preexisting intracellular stores. In vivo, in bile duct,ligated rats, we tested if increased ASBT activity (induced by secretin pretreatment) results in cholehepatic shunting of bile acids. We determined the increment in taurocholate-dependent bile flow and biliary lipid secretion and taurocholate (TC) biliary transit time during high ASBT activity. Secretin stimulated colchicine-sensitive ASBT translocation to the cholangiocyte plasma membrane and 3H-TC uptake in purified cholangiocytes. Consistent with increased ASBT promoting cholehepatic shunting, with secretin pretreatment, we found TC induced greater-than-expected biliary lipid secretion and bile flow and there was a prolongation of the TC biliary transit time. Colchicine ablated secretin pretreatment-dependent bile acid,induced choleresis, increased biliary lipid secretion, and the prolongation of the TC biliary transit. In conclusion, secretin stimulates cholehepatic shunting of conjugated bile acids and is associated with increased cholangiocyte apical membrane ASBT. Bile acid transport by cholangiocyte ASBT can contribute to hepatobiliary secretion in vivo. (HEPATOLOGY 2005.) [source]


The role of calcium on protein secretion of the albumen gland in Helisoma duryi (Gastropoda)

INVERTEBRATE BIOLOGY, Issue 4 2004
Lana Kiehn
Abstract. The albumen gland of the freshwater pulmonate snail Helisoma duryi produces and secretes the perivitelline fluid, which coats fertilized eggs and provides nutrients to the developing embryos. It is known that perivitelline fluid secretion is stimulated by dopamine through the activation of a dopamine D1 -like receptor, which in turn stimulates cAMP production leading to the secretion of perivitelline fluid. This paper examines the glandular release of perivitelline fluid and provides evidence for the role of Ca2+ in the regulated secretion of perivitelline fluid based on protein secretion experiments and inositol 1,4,5-trisphosphate assays. Dopamine-stimulated protein secretion by the albumen gland is reduced in Ca2+ -free medium or in the presence of plasma membrane Ca2+ channel blockers, although the Ca2+ channel subtype involved is unclear. In addition, dopamine-stimulated protein secretion does not directly involve phospholipase C-generated signaling pathways and Ca2+ release from intracellular stores. Sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase inhibitors had little effect on protein secretion when applied alone; however, they potentiated dopamine-stimulated protein secretion. Dantrolene, an inhibitor of ryanodine receptors, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride, a nonspecific inhibitor of intracellular Ca2+ channels, and 2-aminoethyldiphenylborate, an inhibitor of inositol 1,4,5-trisphosphate receptors, did not suppress protein secretion, suggesting Ca2+ release from internal stores does not directly regulate protein secretion. Thus, the influx of Ca2+ from the extracellular space appears to be the major pathway mediating protein secretion by the albumen gland. The results are discussed with respect to the role of Ca2+ in controlling exocytosis of proteins from the albumen gland secretory cells. [source]


Effect of selenium-supplement on the calcium signaling in human endothelial cells,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2005
Yi Zheng
Intracellular Ca2+ signaling controls many cellular functions. Understanding its regulation by selenoproteins is essential for understanding the role of selenoproteins in regulating cell functions. The activity of thioredoxin reductase (TrxR), thioredoxin (Trx) content, and the activity of glutathione peroxidase (GPx) in the human endothelial cells cultured in selenium-supplemented medium (refer as Se+ cells) was found 70%, 40%, and 20% higher, respectively than those in the cells cultured in normal medium (refer as Se0 cells). The intracellular Ca2+ signaling initiated by inositol 1,4,5-trisphosphate (IP3), histamine, thapsigargin (TG), carbonyl cyanide p -(tri-fluoromethoxy) phenyl-hydrazone (FCCP), and cyclosporin A (CsA) was investigated in both Se+ and Se0 cells. It was interestingly found that the higher activity of selenoproteins reduced the sensitivity of IP3 receptor to the IP3 -triggered Ca2+ release from intracellular stores, but enhanced activation of the receptor-coupled phospholipase C in histamine-stimulated Se+ cells by showing much more generation of IP3 and higher elevation of cytosolic Ca2+. The higher selenoprotein activity also reduced susceptibility of the uniporter to the mitochondrial uncoupler, susceptibility of the permeability transition pore (PTP) to its inhibitor, and the vulnerability of endoplasmic reticulum (ER) Ca2+ -ATPase to its inhibitor in selenium-supplementing cells. The results suggest that cell calcium signaling is subjected to thiol-redox regulation by selenoproteins. © 2005 Wiley-Liss, Inc. [source]


Histamine-induced Ca2+ entry in human astrocytoma U373 MG cells: Evidence for involvement of store-operated channels

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2008
Margarita Barajas
Abstract Glial and glia-derived cells express a variety of receptors for neurotransmitters and hormones, the majority of which evoke both Ca2+ release from intracellular stores and Ca2+ entry across the plasma membrane. We investigated the links between histamine H1 receptor activation, Ca2+ release from intracellular stores and Ca2+ influx in human astrocytoma U373 MG cells. Histamine, through a H1 receptor-mediated effect, evoked an increase in cytoplasmic free calcium concentration ([Ca2+]i) that occurred in two phases: an initial, transient, increase owing to Ca2+ mobilization from intracellular pools, and a second, sustained increase dependent on both Ca2+ influx and continuous receptor occupancy. The characteristics of histamine-induced increases in [Ca2+]i were similar to the capacitative entry evoked by emptying of the Ca2+ stores with thapsigargine, and different from that observed when Ca2+ influx was activated with OAG (1-oleoyl-2-acetyl- sn -glycerol), a diacylglycerol (DAG) analog. OAG application or increased endogenous DAG, resulting from DAG kinase inhibition, reduced the histamine-induced response. Furthermore, activation of the DAG target, protein kinase C (PKC), by TPA (12-O-tetradecanoyl 4,-phorbol 13,-acetate) resulted in inhibition of the histamine-induced Ca2+ response, an action prevented by PKC inhibitors. By using reverse transcriptase,polymerase chain reaction analysis, mRNAs for transient receptor potential channels (TRPCs) 1, 4, and 6 as well as for STIM1 (stromal-interacting molecule) and Orai1 were found to be expressed in the U373 MG cells, and confocal microscopy using specific antibodies revealed the presence of the corresponding proteins. Therefore, TRPCs may be candidate proteins forming store-operated channels in the U373 MG cell line. Further, our results confirm the involvement of PKC in the regulation of H1 receptor-induced responses and point out to the existence of a feedback mechanism acting via PKC to limit the increase in [Ca2+]i. © 2008 Wiley-Liss, Inc. [source]


Ca2+ mobilization mediated by transient receptor potential canonical 3 is associated with thrombin-induced morphological changes in 1321N1 human astrocytoma cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2008
Kenji Nakao
Abstract Activated astrocytes show various patterns of Ca2+ mobilization under pathological conditions. In the present study we revealed a novel function of astrocytic Ca2+ dynamics through investigation of thrombin-induced unique Ca2+ entry. Using 1321N1 human astrocytoma cells, which have been shown to be a good model for detecting morphological dynamics, we observed rapid retraction of bipolar protrusions that were reversibly evoked by 0.03,3 U/mL thrombin. Morphological changes were predominantly dependent on a specific thrombin receptor subtype, proteinase-activated receptor 1 (PAR-1). In parallel, Fura-2 imaging of intracellular Ca2+ concentration ([Ca2+]i) showed that thrombin induced heterogeneous Ca2+ responses with asynchronous repetitive peaks. These oscillations were found to be a result of repetitive Ca2+ release from intracellular stores, followed by refilling of Ca2+ from the extracellular region without a direct [Ca2+]i increase. Pharmacological manipulation with BAPTA-AM, cyclopiazonic acid, and 2-aminoethoxydiphenyl borate indicated that Ca2+ mobilization was involved in thrombin-induced morphological changes. We further addressed the role of Ca2+ entry using small interfering RNA (siRNA) for transient receptor potential canonical 3 (TRPC3). As a result, both thrombin-induced morphological changes and oscillatory Ca2+ responses were significantly attenuated in siRNA-transfected cells. Inhibition of TRPC3 with pyrazole-3 also provided support for the contribution of Ca2+ influx. Moreover, TRPC3-mediated Ca2+ dynamics regulated thrombin-induced phosphorylation of myosin light chain 2. These results suggest a novel function of astrocytic Ca2+ dynamics, including Ca2+ entry, in the pathophysiological effects of PAR-1-mediated astrocytic activation. TRPC3 forms a functional Ca2+ channel and might modulate astrocytic activation in response to brain hemorrhaging. © 2008 Wiley-Liss, Inc. [source]


An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
Hirotaka Oikawa
Abstract Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of an assembly between at least seven alpha (,2,,7, ,9) and three beta (,2,,4) subunits in mammals. The addition of 50 mM KCl or 1 mM nicotine immediately increased the number of cells with high fluorescence intensity in rat cortical astrocytes on fluo-3 fluorescence measurement. Nicotine was effective at increasing the fluorescence intensity in astrocytes cultured for 2 days after replating, but not in those used 1 or 5 days after replating, without markedly affecting the cellular viability irrespective of the exposure period. Nicotine markedly increased the fluorescence intensity in a concentration-dependent manner at a concentration range of 10,100 ,M in cultured astrocytes when analyzed on a responsive single cell. In these responsive single cells, the increase by nicotine was significantly prevented by the heteromeric ,4/,2 subtype antagonist dihydro-,-erythroidine and the homomeric ,7 subtype antagonist methyllycaconitine, as well as by nifedipine and EGTA but not thapsigargin. Methyllycaconitine failed to inhibit further the increase by nicotine in the presence of nifedipine, however, whereas the expression of mRNA was seen for all mammalian neuronal nAChR subunits in cultured rat cortical astrocytes as well as neurons. These results suggest that nicotine may increase intracellular free Ca2+ through the influx of extracellular Ca2+ across L-type voltage-gated Ca2+ channels rather than Ca2+ release from intracellular stores, in a manner related to the ,4/,2 and/or ,7 nAChR channels functionally expressed in cultured rat cortical astrocytes. © 2005 Wiley-Liss, Inc. [source]


Prostaglandin F2, upregulates interleukin-6 production in human gingival fibroblasts

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2001
Kazuyuki Noguchi
Prostaglandin F2,(PGF2,) is a bioactive lipid mediator which has been suggested to be involved in the pathogenesis of periodontal disease. However, the roles of PGF2, in periodontal lesions are poorly understood. In the present study, we investigated the effect of PGF2, on interleukin (IL)-6 production in human gingival fibroblasts (HGF). PGF2,stimulated IL-6 production in a time- and concentration-dependent fashion. IL-1, and tumor necrosis factor ,(TNF,), proinflammatory cytokines, induced IL-6 production in a time-dependent manner, and PGF2,synergistically enhanced IL-6 production induced by IL-1, and TNF,. IL-6 mRNA was expressed in PGF2, -stimulated HGF, and PGF2, increased IL-6 mRNA levels induced by IL-1, and TNF,. Fluprostenol, a selective FP receptor agonist, could mimic PGF2, -induced IL-6 production. Since FP receptors are coupled to elevation of intracellular calcium and activation of protein kinase C (PKC), the mechanism of IL-6 production by PGF2, was investigated using TMB-8, an inhibitor of Ca2+ mobilization from intracellular stores, and calphostin C, an inhibitor of PKC. TMB-8 significantly suppressed PGF2, -induced IL-6 production, whereas calphostin C showed a stimulatory effect on PGF2, -induced IL-6 production. From these data, we suggest that PGF2, upregulates IL-6 production through FP receptors in HGF, that PGF2, synergistically enhances IL-6 production in IL-1,- and TNF,-stimulated HGF, and that PGF2, -induced IL-6 production may be dependent on intracellular Ca2+ mobilization and be downregulated by PKC activation. PGF2, may be involved in the pathogenesis of periodontal disease by enhancing IL-6 levels in periodontal lesions. [source]


Products of tryptophan catabolism induce Ca2+ release and modulate the cell cycle of Plasmodium falciparum malaria parasites

JOURNAL OF PINEAL RESEARCH, Issue 3 2005
Flávio H. Beraldo
Abstract:, Intraerythrocytic malaria parasites develop in a highly synchronous manner. We have previously shown that the host hormone melatonin regulates the circadian rhythm of the rodent malaria parasite, Plasmodium chabaudi, through a Ca2+ -based mechanism. Here we show that melatonin and other molecules derived from tryptophan, i.e. N -acetylserotonin, serotonin and tryptamine, also modulate the cell cycle of human malaria parasite P. falciparum by inducing an increase in cytosolic free Ca2+. This occurs independently of the extracellular Ca2+ concentration, indicating that these molecules induce Ca2+ mobilization from intracellular stores in the trophozoite. This in turn leads to an increase in the proportion of schizonts. The effects of the indolamines in increasing cytosolic free Ca2+ and modulating the parasite cell cycle are both abrogated by an antagonist of the melatonin receptor, luzindole, and by the phospholipase inhibitor, U73122. [source]


Extracellular Arginine Rapidly Dilates In Vivo Intestinal Arteries and Arterioles Through a Nitric Oxide Mechanism

MICROCIRCULATION, Issue 2 2008
Laura Pezzuto
ABSTRACT Objective: Arginine used for nitric oxide formation can be from intracellular stores or transported into cells. The study evaluated the rapidity, and primary site of NO and vascular resistance responses to arginine at near physiological concentrations (100,400 , M). Methods: Arginine was applied to a single arteriole through a micropipette to determine the fastest possible responses. For vascular blood flow and [NO] responses, arginine was added to the bathing media. Results: Dilation of single arterioles to arginine began in 10,15 seconds and application over the entire vasculature increased [NO] in , 60,90 seconds, and flow increased within 120,300 seconds. Resting periarteriolar [NO] for arterioles was 493.6 ± 30.5 nM and increased to 696.1 ± 68.2 and 820.1 ± 110.5 nM at 200 and 400 , M L-arginine. The blood flow increased 50% at 400,1200 , M L-arginine. The reduced arterial resistance during topical arginine was significantly greater than microvascular resistance at 100 and 200 , M arginine. All responses were blocked by L-NAME. Conclusions: This study demonstrated arterial resistance responses are as or more responsive to arginine induced NO formation as arterioles at near physiological concentrations of arginine. The vascular NO and resistance responses occurred rapidly at L-arginine concentrations at and below 400 , M, which predict arginine transport processes were involved. [source]


Cellular Physiology of Retinal and Choroidal Arteriolar Smooth Muscle Cells

MICROCIRCULATION, Issue 1 2007
C. N. SCHOLFIELD
ABSTRACT Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 + -ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl, channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation. [source]


Membrane Hyperpolarization Is Not Required for Sustained Muscarinic Agonist-Induced Increases in Intracellular Ca2+ in Arteriolar Endothelial Cells

MICROCIRCULATION, Issue 2 2005
KENNETH D. COHEN
ABSTRACT Objective: Hyperpolarization modulates Ca2+ influx during agonist stimulation in many endothelial cells, but the effects of hyperpolarization on Ca2+ influx in freshly isolated arteriolar endothelial cells are unknown. Therefore, the purpose of the present study was to characterize agonist-induced Ca2+ transients in freshly isolated arteriolar endothelial cells and to test the hypothesis that membrane hyperpolarization augments agonist-induced Ca2+ influx into these cells. Methods: Arterioles were removed from hamster cremaster muscles and arteriolar endothelial cells were enzymatically isolated. Endothelial cells were loaded with Fura 2-AM and the Fura 2 ratio measured photometrically as an index of intracellular Ca2+. The cells were then stimulated with the muscarinic, cholinergic agonist, methacholine, and the resulting Ca2+ transients were measured. Results: Methacholine (1 , M) increased the endothelial cell Fura 2 ratio from a baseline of 0.81 ± 0.02 to an initial peak of 1.17 ± 0.05 (n = 17) followed by a sustained plateau of 1.12 ± 0.07. The plateau phase of the Ca2+ transient was inhibited by removal of extracellular Ca2+ (n = 12, p < .05), or the nonselective cation channel blockers Gd3+ (30 , M; n = 7, p < .05) or La3+ (50 , M; n = 7, p < .05) without significant effect on the baseline or peak (p > .05). The initial peak of methacholine-induced Ca2+ transients was inhibited by the IP3 -receptor antagonist xestospongin D (10 , M, n = 5, p < .05). The methacholine-induced Ca2+ transients were accompanied by endothelial cell hyperpolarization of approximately 14,18 mV, as assessed by experiments using the potentiometric dye, di-8-ANEPPS as well as by patch-clamp experiments. However, inhibition of hyperpolarization by blockade of Ca2+ -activated K+ channels with charybdotoxin (100 nM) and apamin (100 nM) (n = 5), or exposure of endothelial cells to 80 or 145 mM KCl (both n = 7) had no effect on the plateau phase of methacholine-induced Ca2+ transients (p > .05). Conclusions: Freshly isolated arteriolar endothelial cells display agonist-induced Ca2+ transients. For the muscarinic agonist, methacholine, these Ca2+ transients result from release of Ca2+ from intracellular stores through IP3 receptors, followed by sustained influx of extracellular Ca2+. While these changes in intracellular Ca2+ are associated with endothelial cell hyperpolarization, the methacholine-induced, sustained increase in intracellular Ca2+ appears to be independent from this change in membrane potential. These data suggest that arteriolar endothelial cells may possess a novel Ca2+ influx pathway, or that the relationship between intracellular Ca2+ and Ca2+ influx is more complex than that observed in other endothelial cells. [source]


Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2003
Qing-Yuan Sun
Abstract Following fusion of sperm and egg, the contents of cortical granules (CG), a kind of special organelle in the egg, release into the perivitelline space (cortical reaction), causing the zona pellucida to become refractory to sperm binding and penetration (zona reaction). Accumulating evidence demonstrates that mammalian cortical reaction is probably mediated by activation of the inositol phosphate (PIP2) cascade. The sperm-egg fusion, mediated by GTP-binding protein (G-protein), may elicit the generation of two second messengers, inositol 1,4,5 triphosphate (IP3) and diacylglycerol (DAG). The former induces Ca2+ release from intracellular stores and the latter activates protein kinase C (PKC), leading to CG exocytosis. Calmodulin-dependent kinase II (CaMKII) may act as a switch in the transduction of the calcium signal. The CG exudates cause zona sperm receptor modification and zona hardening, and thus block polyspermic penetration. Oolemma modification after sperm-egg fusion and formation of CG envelope following cortical reaction also contribute to polyspermy block. Microsc. Res. Tech. 61:342,348, 2003. © 2003 Wiley-Liss, Inc. [source]


Polycystins: what polycystic kidney disease tells us about sperm

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Abraham L. Kierszenbaum
Abstract Experimental evidence indicates that the membrane-associated proteins polycystin-1 and polycystin-2 operate as a receptor-calcium channel complex that regulates signaling pathways essential for modulation of renal tubulogenesis. Polycystic kidney disease is characterized by defective renal tubular structure and results from mutations in either PKD1 or PKD2 genes. Recent data suggest that polycystin-1 and polycystin-2 might localize to primary cilium in principal cells of renal collecting tubules and are thought to act as mechanosensors of fluid flow and contents. Ciliary bending by fluid flow or mechanical stimulation induce Ca2+ release from intracellular stores, presumably to modulate ion influx in response to tubular fluid flow. Polycystins are also emerging as playing a significant role in sperm development and function. Drosophila polycystin-2 is associated with the head and tail of mature sperm. Targeted disruption of the PKD2 homolog results in nearly complete male sterility without disrupting spermatogenesis. Mutant sperm are motile but are unable to reach the female storage organs (seminal receptacles and spermathecae). The sea urchin polycystin-1-equivalent suPC2 colocalizes with the polycystin-1 homolog REJ3 to the plasma membrane over the acrosomal vesicle. This localization site suggests that the suPC2-REJ3 complex may function as a cation channel mediating acrosome reaction when sperm contact the jelly layer surrounding the egg at fertilization. Future studies leading to the identification of specific ligands for polycystins, including the signaling pathways, might define the puzzling relationship between renal tubular morphogenesis and sperm development and function. Mol. Reprod. Dev. 67: 385,388, 2004. © 2004 Wiley-Liss, Inc. [source]


Regulation of Kv channel expression and neuronal excitability in rat medial nucleus of the trapezoid body maintained in organotypic culture

THE JOURNAL OF PHYSIOLOGY, Issue 9 2010
Huaxia Tong
Principal neurons of the medial nucleus of the trapezoid body (MNTB) express a spectrum of voltage-dependent K+ conductances mediated by Kv1,Kv4 channels, which shape action potential (AP) firing and regulate intrinsic excitability. Postsynaptic factors influencing expression of Kv channels were explored using organotypic cultures of brainstem prepared from P9,P12 rats and maintained in either low (5 mm, low-K) or high (25 mm, high-K) [K+]o medium. Whole cell patch-clamp recordings were made after 7,28 days in vitro. MNTB neurons cultured in high-K medium maintained a single AP firing phenotype, while low-K cultures had smaller K+ currents, enhanced excitability and fired multiple APs. The calyx of Held inputs degenerated within 3 days in culture, having lost their major afferent input; this preparation of calyx-free MNTB neurons allowed the effects of postsynaptic depolarisation to be studied with minimal synaptic activity. The depolarization caused by the high-K aCSF only transiently increased spontaneous AP firing (<2 min) and did not measurably increase synaptic activity. Chronic depolarization in high-K cultures raised basal levels of [Ca2+]i, increased Kv3 currents and shortened AP half-widths. These events relied on raised [Ca2+]i, mediated by influx through voltage-gated calcium channels (VGCCs) and release from intracellular stores, causing an increase in cAMP-response element binding protein (CREB) phosphorylation. Block of VGCCs or of CREB function suppressed Kv3 currents, increased AP duration, and reduced Kv3.3 and c- fos expression. Real-time PCR revealed higher Kv3.3 and Kv1.1 mRNA in high-K compared to low-K cultures, although the increased Kv1.1 mRNA was mediated by a CREB-independent mechanism. We conclude that Kv channel expression and hence the intrinsic membrane properties of MNTB neurons are homeostatically regulated by [Ca2+]i -dependent mechanisms and influenced by sustained depolarization of the resting membrane potential. [source]


AMPA-sst2 somatostatin receptor interaction in rat hypothalamus requires activation of nmda and/or metabotropic glutamate receptors and depends on intracellular calcium

THE JOURNAL OF PHYSIOLOGY, Issue 1 2003
Stéphane Peineau
Modulation of glutamatergic transmission by neuropeptides is an essential aspect of neuronal network activity. Activation of the hypothalamic somatostatin sst2 receptor subtype by octreotide decreases AMPA glutamate responses, indicating a central link between a neurohormonal and neuromodulatory peptide and the main hypothalamic fast excitatory neurotransmitter. In mediobasal hypothalamic slices, sst2 activation inhibits the AMPA component of glutamatergic synaptic responses but is ineffective when AMPA currents are pharmacologically isolated. In mediobasal hypothalamic cultures, the decrease of AMPA currents induced by octreotide requires a concomitant activation of sst2 receptors with either NMDA and/or metabotropic glutamate receptors. This modulation depends on changes in intracellular calcium concentration induced by calcium flux through NMDA receptors or calcium release from intracellular stores following metabotropic glutamate receptor activation. These results highlight an unusual regulatory mechanism in which the simultaneous activation of at least three different types of receptor is necessary to allow somatostatin-induced modulation of fast synaptic glutamatergic transmission in the hypothalamus. [source]


Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors,

ANNALS OF NEUROLOGY, Issue 2 2009
Mohamed Ouardouz PhD
Objective The deleterious effects of glutamate excitotoxicity are well described for central nervous system gray matter. Although overactivation of glutamate receptors also contributes to axonal injury, the mechanisms are poorly understood. Our goal was to elucidate the mechanisms of kainate receptor,dependent axonal Ca2+ deregulation. Methods Dorsal column axons were loaded with a Ca2+ indicator and imaged in vitro using confocal laser-scanning microscopy. Results Activation of glutamate receptor 6 (GluR6) kainate receptors promoted a substantial increase in axonal [Ca2+]. This Ca2+ accumulation was due not only to influx from the extracellular space, but a significant component originated from ryanodine-dependent intracellular stores, which, in turn, depended on activation of L-type Ca2+ channels: ryanodine, nimodipine, or nifedipine blocked the agonist-induced Ca2+ increase. Also, GluR6 stimulation induced intraaxonal production of nitric oxide (NO), which greatly enhanced the Ca2+ response: quenching of NO with intraaxonal (but not extracellular) scavengers, or inhibition of neuronal NO synthase with intraaxonal N,-nitro-L-arginine methyl ester, blocked the Ca2+ increase. Loading axons with a peptide that mimics the C-terminal PDZ binding sequence of GluR6, thus interfering with the coupling of GluR6 to downstream effectors, greatly reduced the agonist-induced axonal Ca2+ increase. Immunohistochemistry showed GluR6/7 clusters on the axolemma colocalized with neuronal NO synthase and Cav1.2. Interpretation Myelinated spinal axons express functional GluR6-containing kainate receptors, forming part of novel signaling complexes reminiscent of postsynaptic membranes of glutamatergic synapses. The ability of such axonal "nanocomplexes" to release toxic amounts of Ca2+ may represent a key mechanism of axonal degeneration in disorders such as multiple sclerosis where abnormal accumulation of glutamate and NO are known to occur. Ann Neurol 2009 [source]