Intracellular Solution (intracellular + solution)

Distribution by Scientific Domains


Selected Abstracts


Extracellular cAMP inhibits P2X3 receptors in rat sensory neurones through G protein-mediated mechanism

ACTA PHYSIOLOGICA, Issue 2 2010
M. V. Mamenko
Abstract Aim:, To identify the mechanisms of P2X3 receptor inhibition by extracellular cyclic adenosine monophosphate (cAMP) in rat dorsal root ganglion (DRG) neurones. Methods:, Whole-cell currents were measured in cultured DRG neurones using the combination of voltage and concentration clamp. Results:, We have found that extracellular cAMP inhibits P2X3 -mediated currents in a concentration- and use-dependent manner. The P2X3 currents, activated by ATP applied every 4 min, were inhibited by 55% in the presence of 10 ,m cAMP and by 81% in the presence of 30 ,m cAMP. At 8 min interval between ATP applications the same concentration of cAMP did not alter the currents. Addition of 0.5 mm of guanosine 5,- O -(2-thiodiphosphate) to intracellular solution blocked the inhibitory action of cAMP. The inhibitory effects of cAMP were not mimicked by extracellular application of 30 ,m adenosine. Conclusions:, In this paper, we demonstrate, for the first time, that extracellular application of cAMP to rat sensory neurones inhibits P2X3 receptors via a G protein-coupled mechanism in a use-dependent manner, thus indicating the neuronal expression of specific plasmalemmal cAMP receptor. [source]


Gating of the expressed T-type Cav3.1 calcium channels is modulated by Ca2+

ACTA PHYSIOLOGICA, Issue 4 2006
L. Lacinová
Abstract Aim:, We have investigated the influence of Ca2+ ions on the basic biophysical properties of T-type calcium channels. Methods:, The Cav3.1 calcium channel was transiently expressed in HEK 293 cells. Current was measured using the whole cell patch clamp technique. Ca2+ or Na+ ions were used as charge carriers. The intracellular Ca2+ was either decreased by the addition of 10 mm ethyleneglycoltetraacetic acid (EGTA) or increased by the addition of 200 ,m Ca2+ into the non-buffered intracellular solution. Various combinations of extra- and intracellular solutions yielded high, intermediate or low intracellular Ca2+ levels. Results:, The amplitude of the calcium current was independent of intracellular Ca2+ concentrations. High levels of intracellular Ca2+ accelerated significantly both the inactivation and the activation time constants of the current. The replacement of extracellular Ca2+ by Na+ as charge carrier did not affect the absolute value of the activation and inactivation time constants, but significantly enhanced the slope factor of the voltage dependence of the inactivation time constant. Slope factors of voltage dependencies of channel activation and inactivation were significantly enhanced. The recovery from inactivation was faster when Ca2+ was a charge carrier. The number of available channels saturated for membrane voltages more negative than ,100 mV for the Ca2+ current, but did not reach steady state even at ,150 mV for the Na+ current. Conclusions:, Ca2+ ions facilitate transitions of Cav3.1 channel from open into closed and inactivated states as well as backwards transition from inactivated into closed state, possibly by interacting with its voltage sensor. [source]


Modulation of glycine responses by dihydropyridines and verapamil in rat spinal neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001
Dominique Chesnoy-Marchais
Abstract Although glycine receptors (GlyRs) are responsible for the main spinal inhibitory responses in adult vertebrates, in the embryo they have been reported to mediate depolarizing responses, which can sometimes activate dihydropyridine-sensitive l -type calcium channels. However, these channels are not the only targets of dihydropyridines (DHPs), and we questioned whether GlyRs might be directly modulated by DHPs. By whole-cell recording of cultured spinal neurons, we investigated modulation of glycine responses by the calcium channel antagonists, nifedipine, nitrendipine, nicardipine and (R)-Bay K 8644, and by the calcium channel, agonist (S)-Bay K 8644. At concentrations between 1 and 10 µm, all these DHPs could block glycine responses, even in the absence of extracellular Ca2+. The block was stronger at higher glycine concentrations, and increased with time during each glycine application. Nicardipine blocked GABAA responses from the same neurons in a similar manner. In addition to their blocking effects, nitrendipine and nicardipine potentiated the peak responses to low glycine concentrations. Both effects of extracellular nitrendipine on glycine responses persisted when the drug was present in the intracellular solution. Thus, these modulations are related neither to calcium channel modulation nor to possible intracellular effects of DHPs. Another type of calcium antagonist, verapamil (10,50 µm), also blocked glycine responses. Our results suggest that some of the effects of calcium antagonists, including the neuroprotective and anticonvulsant effects of DHPs, might result partly from their interactions with ligand-gated chloride channels. [source]


Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Jan Benedikt
Abstract Ethanol has opposite effects on two members of the transient receptor potential (TRP) family of ion channels: it inhibits the cold-menthol receptor TRPM8, whereas it potentiates the activity of the heat- and capsaicin-gated vanilloid receptor TRPV1. Both thermosensitive cation channels are critically regulated by the membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2). The effects of this phospholipid on TRPM8 and TRPV1 are also functionally opposite: PIP2 is necessary for the activation of TRPM8 but it constitutively inhibits TRPV1. This parallel led us to investigate the possible role of PIP2 in the ethanol-induced modulation of rat TRPM8, heterologously expressed in HEK293T cells. In this study, we characterize the effects of ethanol (0.1,10%) on whole-cell currents produced by menthol and by low temperature (< 17°C). We show that the inclusion of PIP2 in the intracellular solution results in a strong reduction in the ethanol-induced inhibition of menthol-evoked responses. Conversely, intracellular dialysis with anti-PIP2 antibody or with the PIP2 scavenger, poly l -lysine, enhanced the ethanol-induced inhibition of TRPM8. A 20 min pre-incubation with wortmannin caused a modest decrease in inhibition produced by 1% ethanol, indicating that the ethanol-induced inhibition is not mediated by lipid kinases. These findings suggest that ethanol inhibits TRPM8 by weakening the PIP2,TRPM8 channel interaction; a similar mechanism may contribute to the ethanol-mediated modulation of some other PIP2 -sensitive TRP channels. [source]


4-Aminopyridine affects rat arterial smooth muscle BKCa currents by changing intracellular pH

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2000
Polina Petkova-Kirova
The hypothesis whether or not 4-AP can affect vascular smooth muscle BKCa currents was tested using the patch-clamp technique, pH- and calcium-fluorimetry, and freshly isolated rat arterial smooth muscle cells. Application of 4-AP reversibly inhibited BKCa currents at an intracellular calcium ([Ca]i) of 250 nM with a half-block of 2.5 mM at +50 mV. The presence of 2 ,M thapsigargin, 10 ,M heparin, and 10 ,M ryanodine did not alter the effect of 4-AP on BKCa currents at [Ca]i 250 nM. At [Ca]i<100 nM 4-AP did not inhibit BKCa currents. Application of 4-AP to the intracellular or extracellular side of excised BKCa channels did not alter channel activity or channel amplitude. Replacement of the pH-sensitive calcium buffer EGTA by the pH-insensitive calcium buffer BAPTA in the intracellular solution turned the 4-AP-induced inhibition of BKCa currents into a stimulation at [Ca]i 250 nM. Application of 4-AP to single cells increased intracellular pH, which was accompanied by a reduction of [Ca]i in EGTA-loaded cells and a stable [Ca]i in BAPTA-loaded cells. Thus, these results suggest that in isolated vascular smooth muscle cells at [Ca]i>100 nM 4-AP affects BKCa currents via an alteration of intracellular pH. British Journal of Pharmacology (2000) 131, 1643,1650; doi:10.1038/sj.bjp.0703742 [source]


Gating of the expressed T-type Cav3.1 calcium channels is modulated by Ca2+

ACTA PHYSIOLOGICA, Issue 4 2006
L. Lacinová
Abstract Aim:, We have investigated the influence of Ca2+ ions on the basic biophysical properties of T-type calcium channels. Methods:, The Cav3.1 calcium channel was transiently expressed in HEK 293 cells. Current was measured using the whole cell patch clamp technique. Ca2+ or Na+ ions were used as charge carriers. The intracellular Ca2+ was either decreased by the addition of 10 mm ethyleneglycoltetraacetic acid (EGTA) or increased by the addition of 200 ,m Ca2+ into the non-buffered intracellular solution. Various combinations of extra- and intracellular solutions yielded high, intermediate or low intracellular Ca2+ levels. Results:, The amplitude of the calcium current was independent of intracellular Ca2+ concentrations. High levels of intracellular Ca2+ accelerated significantly both the inactivation and the activation time constants of the current. The replacement of extracellular Ca2+ by Na+ as charge carrier did not affect the absolute value of the activation and inactivation time constants, but significantly enhanced the slope factor of the voltage dependence of the inactivation time constant. Slope factors of voltage dependencies of channel activation and inactivation were significantly enhanced. The recovery from inactivation was faster when Ca2+ was a charge carrier. The number of available channels saturated for membrane voltages more negative than ,100 mV for the Ca2+ current, but did not reach steady state even at ,150 mV for the Na+ current. Conclusions:, Ca2+ ions facilitate transitions of Cav3.1 channel from open into closed and inactivated states as well as backwards transition from inactivated into closed state, possibly by interacting with its voltage sensor. [source]