Intracellular Response (intracellular + response)

Distribution by Scientific Domains


Selected Abstracts


Tissue factor: a mini-review

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 3 2007
Valéry Daubie
Abstract Tissue factor (TF) is historically known as the trigger of the coagulation cascade. This integral membrane glycoprotein forms a ternary complex with factor VIIa (FVIIa) and zymogen factor (FX), which is then activated to factor Xa (FXa). The latter cleaves prothrombin into thrombin (FIIa), which in turn activates fibrinogen in fibrin monomers. What is less known is its additional non-haemostatic roles in inflammation, tumour growth and angiogenesis. This aspect will be developed here. TF, as a transmembrane protein, has a signalling effect requiring FVIIa. TF,FVIIa complex activates G protein-coupled receptor protease-activated receptor 2 (PAR-2) and therefore modulates various cellular processes, such as cell proliferation and survival, gene transcription and protein translation. In this review we will first highlight, using recent structural data, the ,potentially' active domain able to modulate the triggered intracellular response. We also will focus on the still emerging and promising results deciphering the diverse locations in which TF appears. We conclude with a description of an emerging and atypical use of tissue factor in platelet gel surgery for sinus augmentation. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Cultured epithelial cells response to phototherapy with low intensity laser,

LASERS IN SURGERY AND MEDICINE, Issue 4 2007
Fernanda P. Eduardo PhD
Abstract Background and Objectives Little is known about the intracellular response of epithelial cells to phototherapy. The aim of this in vitro study was to analyze the effect of phototherapy with low-energy lasers with different wavelengths and powers on cultured epithelial cell growth under different nutritional conditions. Study Design/Materials and Methods Epithelial cell cultures (Vero cell line) grown in nutritional deficit in culture medium supplemented with 2% fetal bovine serum (FBS) were irradiated with low-energy laser from one to three times with a GaAlAs laser (660 nm) and InGaAlP (780 nm), 40 and 70 mW, respectively, with 3 or 5 J/cm2. Cell growth was indirectly assessed by measuring the cell mitochondrial activity. Results Nonirradiated cell cultures grown in nutritional regular medium supplemented with 10% FBS produced higher cell growth than all cultures grown in nutritional deficit irradiated or not. The overall cell growth of cultures grown under nutritionally deficit conditions was significantly improved especially when irradiated with 780 nm for three times. Conclusions Phototherapy with the laser parameters tested increases epithelial cell growth rate for cells stressed by growth under nutritionally deficient states. This cell growth improvement is directly proportional to the number of irradiations; however, was not enough to reach the full cell growth potential rate of Vero epithelial cell line observed when growing under nutritional regular condition. Lasers Surg. Med. 39: 365,372, 2007. © 2007 Wiley-Liss, Inc. [source]


Molecular targets of lithium action

ACTA NEUROPSYCHIATRICA, Issue 6 2003
B Corbella
Lithium is an effective drug for both the treatment and prophylaxis of bipolar disorder. However, the precise mechanism of lithium action is not yet well understood. Extensive research aiming to elucidate the molecular mechanisms underlying the therapeutic effects of lithium has revealed several possible targets. The behavioral and physiological manifestations of the illness are complex and are mediated by a network of interconnected neurotransmitter pathways. Thus, lithium's ability to modulate the release of serotonin at presynaptic sites and modulate receptor-mediated supersensitivity in the brain remains a relevant line of investigation. However, it is at the molecular level that some of the most exciting advances in the understanding of the long-term therapeutic action of lithium will continue in the coming years. The lithium cation possesses the selective ability, at clinically relevant concentrations, to alter the PI second-messenger system, potentially altering the activity and dynamic regulation of receptors that are coupled to this intracellular response. Subtypes of muscarinic receptors in the limbic system may represent particularly sensitive targets in this regard. Likewise, preclinical data have shown that lithium regulates arachidonic acid and the protein kinase C signaling cascades. It also indirectly regulates a number of factors involved in cell survival pathways, including cAMP response element binding protein, brain-derived neurotrophic factor, bcl-2 and mitogen-activated protein kinases, and may thus bring about delayed long-term beneficial effects via under-appreciated neurotrophic effects. Identification of the molecular targets for lithium in the brain could lead to the elucidation of the pathophysiology of bipolar disorder and the discovery of a new generation of mood stabilizers, which in turn may lead to improvements in the long-term outcome of this devastating illness (1). [source]


C-peptide makes a comeback

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2003
John Wahren
Proinsulin C-peptide was for long considered to be without biological activity of its own. New findings demonstrate, however, that it is capable of eliciting both molecular and physiological effects, suggesting that C-peptide is in fact a bioactive peptide. When administered in replacement doses to animal models or to patients with type 1 diabetes, C-peptide ameliorates diabetes-induced functional and structural changes in both the kidneys and the peripheral nerves. It augments blood flow in a number of tissues, notably skeletal muscle, myocardium, skin and nerve. These effects are thought to be mediated via a stimulatory influence on Na+,K+ -ATPase and on endothelial nitric oxide synthase. Specific binding of C-peptide to cell membranes of intact cells and to detergent-solubilized cellular components has been demonstrated, indicating the existence of cell-surface binding sites for C-peptide. A number of intracellular responses are elicited by C-peptide, including a rise in Ca2+ concentration and activation of MAP-kinase signaling pathways. Many but not all of C-peptide's intracellular effects can be inhibited by pertussis toxin, supporting the notion that C-peptide may interact via a G-protein-coupled receptor. Additional data suggest that C-peptide may interact synergistically also in the insulin signaling pathway. Combined, the available observations show conclusively that C-peptide is biologically active, even though its molecular mechanism of action is not as yet fully understood. The possibility that replacement of C-peptide in patients with type 1 diabetes may serve to retard or prevent the development of long-term complications should be evaluated. Copyright © 2003 John Wiley & Sons, Ltd. [source]