Intracellular Replication (intracellular + replication)

Distribution by Scientific Domains


Selected Abstracts


Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo

CELLULAR MICROBIOLOGY, Issue 9 2001
Suzana P. Salcedo
We used flow cytometry and confocal immunofluorescence microscopy to study the localization of Salmonella typhimurium in spleens of infected mice. Animals were inoculated intragastrically or intraperitoneally with S. typhimurium strains, constitutively expressing green fluorescent protein. Independently of the route of inoculation, most bacteria were found in intracellular locations 3 days after inoculation. Using a panel of antibodies that bound to cells of different lineages, including mononuclear phagocyte subsets, we have shown that the vast majority of S. typhimurium bacteria reside within macrophages. Bacteria were located in red pulp and marginal zone macrophages, but very few were found in the marginal metallophilic macrophage population. We have demonstrated that the Salmonella SPI-2 type III secretion system is required for replication within splenic macrophages, and that sifA, mutant bacteria are found within the cytosol of these cells. These results confirm that SifA and SPI-2 are involved in maintenance of the vacuolar membrane and intracellular replication in vivo. [source]


LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence

MOLECULAR MICROBIOLOGY, Issue 3 2007
Kristie M. Keeney
Summary The bacterial pathogen Listeria monocytogenes replicates within the cytosol of mammalian cells. Mechanisms by which the bacterium exploits the host cytosolic environment for essential nutrients are poorly defined. L. monocytogenes is a lipoate auxotroph and must scavenge this critical cofactor, using lipoate ligases to facilitate attachment of the lipoyl moiety to metabolic enzyme complexes. Although the L. monocytogenes genome encodes two putative lipoate ligases, LplA1 and LplA2, intracellular replication and virulence require only LplA1. Here we show that LplA1 enables utilization of host-derived lipoyl peptides by L. monocytogenes. LplA1 is dispensable for growth in the presence of free lipoate, but necessary for growth on low concentrations of mammalian lipoyl peptides. Furthermore, we demonstrate that the intracellular growth defect of the ,lplA1 mutant is rescued by addition of exogenous lipoic acid to host cells, suggesting that L. monocytogenes dependence on LplA1 is dictated by limiting concentrations of available host lipoyl substrates. Thus, the ability of L. monocytogenes and other intracellular pathogens to efficiently use host lipoyl peptides as a source of lipoate may be a requisite adaptation for life within the mammalian cell. [source]


Adaptation of the brucellae to their intracellular niche

MOLECULAR MICROBIOLOGY, Issue 3 2004
R. Martin Roop II
Summary Members of the bacterial genus Brucella are facultative intracellular pathogens that reside predominantly within membrane-bound compartments within two host cell types, macrophages and placental trophoblasts. Within macrophages, the brucellae route themselves to an intracellular compartment that is favourable for survival and replication, and they also appear to be well-adapted from a physiological standpoint to withstand the environmental conditions encountered during prolonged residence in this intracellular niche. Much less is known about the interactions of the Brucella with placental trophoblasts, but experimental evidence suggests that these bacteria use an iron acquisition system to support extensive intracellular replication within these host cells that is not required for survival and replication in host macrophages. Thus, it appears that the brucellae rely upon the products of distinct subsets of genes to adapt successfully to the environmental conditions encountered within the two cell types within which they reside in their mammalian hosts. [source]


Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo

CELLULAR MICROBIOLOGY, Issue 9 2001
Suzana P. Salcedo
We used flow cytometry and confocal immunofluorescence microscopy to study the localization of Salmonella typhimurium in spleens of infected mice. Animals were inoculated intragastrically or intraperitoneally with S. typhimurium strains, constitutively expressing green fluorescent protein. Independently of the route of inoculation, most bacteria were found in intracellular locations 3 days after inoculation. Using a panel of antibodies that bound to cells of different lineages, including mononuclear phagocyte subsets, we have shown that the vast majority of S. typhimurium bacteria reside within macrophages. Bacteria were located in red pulp and marginal zone macrophages, but very few were found in the marginal metallophilic macrophage population. We have demonstrated that the Salmonella SPI-2 type III secretion system is required for replication within splenic macrophages, and that sifA, mutant bacteria are found within the cytosol of these cells. These results confirm that SifA and SPI-2 are involved in maintenance of the vacuolar membrane and intracellular replication in vivo. [source]