Intracellular Regulator (intracellular + regulator)

Distribution by Scientific Domains


Selected Abstracts


Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5a 2008
Yaohui Zhu
Abstract Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from ,80 to + 40 mV evoked 357 ± 159 pA current in the nystatin perforated patch configuration and 1075 ± 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at ,25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability. [source]


The regulation of integrin-linked kinase in human platelets: evidence for involvement in the regulation of integrin ,2,1

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2004
J. M. Stevens
Summary.,Background: Activation of the platelet integrin ,2,1 is closely regulated due to the high thrombogenicity of its ligand. As a ,1 interacting kinase, ILK represents a candidate intracellular regulator of ,2,1 in human platelets. Objectives We investigated the regulation of ILK in human platelets and the role of ILK in regulating ,2,1 activation in HEL cells, a megakaryocytic cell line. Methods: An in-vitro kinase assay was used to determine the effect of platelet agonists on ILK kinase activity together with the contribution of PI3K and PKC on ILK activation. Interaction of ILK with ,1 -integrin subunits was investigated by coimmunoprecipitation and the role of ILK in regulating ,2,1 function assessed by overexpression studies in HEL cells. Results: We report that collagen and thrombin modulate ILK kinase activity in human platelets in an aggregation-independent manner. Furthermore, ILK activity is dually regulated by PI3K and PKC in thrombin-stimulated platelets and regulated by PI3K in collagen-stimulated cells. ILK associates with the ,1 -integrin subunits immunoprecipitated from platelet cell lysates, an association which increased upon collagen stimulation. Overexpression of ILK in HEL cells enhanced ,2,1 -mediated adhesion whereas overexpression of kinase-dead ILK reduced adhesion, indicating a role for this kinase in the positive regulation of ,2,1. Conclusions: Our findings that ILK regulates ,2,1 in HEL cells, is activated in platelets and associates with ,1 -integrins, raise the possibility that it may play a key role in adhesion events upon agonist stimulation of platelets. [source]


Stage-dependent craniofacial defects resulting from Sprouty2 overexpression

DEVELOPMENTAL DYNAMICS, Issue 7 2007
L. Henry Goodnough
Abstract Sprouty genes encode intracellular regulators of receptor tyrosine kinases that function in a variety of developmental events. Although mice carrying null mutations in Sprouty genes exhibit craniofacial anomalies, the precise role of these regulatory proteins in facial development remains unclear. Here, we show that overexpression of spry2 at the initiation of craniofacial development results in a dramatic arrest in outgrowth of the facial prominences. Although endogenous spry2 and fibroblast growth factor 8 (fgf8) are coexpressed throughout much of craniofacial development, overexpression of spry2 did not alter the spatiotemporal patterns of fgf target gene expression. The morphological consequences of spry2 overexpression were specific: all of the facial prominences were truncated, but despite this gross malformation, the programs of osteogenesis and chondrogenesis were not impaired. Collectively, these data suggest that Sprouty2 plays a role in the outgrowth of facial prominences independent of canonical Fgf signaling. Developmental Dynamics 236:1918,1928, 2007. © 2007 Wiley-Liss, Inc. [source]


Molecular Diversity Of Vascular Potassium Channel Isoforms

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 4 2002
Victoria P Korovkina
SUMMARY 1. One essential role for potassium channels in vascular smooth muscle is to buffer cell excitation and counteract vasoconstrictive influences. Several molecular mechanisms regulate potassium channel function. The interaction of these mechanisms may be one method for fine-tuning potassium channel activity in response to various physiological and pathological challenges. 2. The most prevalent K+ channels in vascular smooth muscle are large-conductance calcium- and voltage-sensitive channels (maxi-K channels) and voltage-gated channels (Kv channels). Both channel types are complex molecular structures consisting of a pore-forming , -subunit and an ancillary , -subunit. The maxi-K and Kv channel , -subunits assemble as tetramers and have S4 transmembrane domains that represent the putative voltage sensor. While most vascular smooth muscle cells identified to date contain both maxi-K and Kv channels, the expression of individual , -subunit isoforms and , -subunit association occurs in a tissue-specific manner, thereby providing functional specificity. 3. The maxi-K channel , -subunit derives its molecular diversity by alternative splicing of a single-gene transcript to yield multiple isoforms that differ in their sensitivity to intracellular Ca2+ and voltage, cell surface expression and post- translational modification. The ability of this channel to assemble as a homo- or heterotetramer allows for fine-tuning control to intracellular regulators. Another level of diversity for this channel is in its association with accessory , -subunits. Multiple , -subunits have been identified that can arise either from separate genes or alternative splicing of a , -subunit gene. The maxi-K channel , -subunits modulate the channel's Ca2+ and voltage sensitivity and kinetic and pharmacological properties. 4. The Kv channel , -subunit derives its diverse nature by the expression of several genes. Similar to the maxi-K channel, this channel has been shown to assemble as a homo- and heterotetramer, which can significantly change the Kv current phenotype in a given cell type. Association with a number of the ancillary , -subunits affects Kv channel function in several ways. Beta-subunits can induce inactivating properties and act as chaperones, thereby regulating channel cell-surface expression and current kinetics. [source]