Home About us Contact | |||
Intracellular Receptors (intracellular + receptor)
Selected AbstractsMicroglia express functional 11,-hydroxysteroid dehydrogenase type 1,GLIA, Issue 10 2010Andres Gottfried-Blackmore Abstract Glucocorticoids are potent regulators of inflammation exerting permissive, stimulatory, and suppressive effects. Glucocorticoid access to intracellular receptors is regulated by the activity of two distinct enzymes known as 11,-hydroxysteroid dehydrogenase (11,HSD) Type 1 and Type 2, which catalyze the activation or deactivation of glucocorticoids. Although expression of these enzymes in major organ systems and their roles in the metabolic effects of glucocorticoids have been described, their role in the inflammatory response has only recently started to be addressed. In this report, we have studied the expression and activity of 11,HSD Type 1 and Type 2 in microglia cells. Microglia, the brain's resident macrophages, initiate and orchestrate CNS inflammatory responses. Importantly, activated microglia are implicated in most neurodegenerative conditions, making them key subjects of study. We found that microglia expressed 11,HSD-1, but not 11,HSD-2, both in ex vivo FACS-sorted adult cells and in vitro primary cultures. 11,HSD-1 expression was increased in LPS-activated microglia. Moreover, 11,HSD-1 catalyzed the metabolic conversion of 11-dehydro-corticosterone into corticosterone (CORT), which potently reduced cytokine production in activated microglia. We propose that 11,HSD-1 may provide microglia with an intrinsic mechanism to autoregulate and inhibit proinflammatory mediator production through CORT formation. © 2010 Wiley-Liss, Inc. [source] TLR-related pathway analysis: novel gene,gene interactions in the development of asthma and atopyALLERGY, Issue 2 2010N. E. Reijmerink To cite this article: Reijmerink NE, Bottema RWB, Kerkhof M, Gerritsen J, Stelma FF, Thijs C, van Schayck CP, Smit HA, Brunekreef B, Koppelman GH, Postma DS. TLR-related pathway analysis: novel gene,gene interactions in the development of asthma and atopy. Allergy 2010; 65: 199,207. Abstract Background:, The toll-like receptor (TLR)-related pathway is important in host defence and may be crucial in the development of asthma and atopy. Numerous studies have shown associations of TLR-related pathway genes with asthma and atopy phenotypes. So far it has not been investigated whether gene,gene interactions in this pathway contribute to atopy and asthma development. Methods:, One hundred and sixty-nine haplotype tagging single nucleotide polymorphisms (SNPs) of 29 genes (i.e. membrane and intracellular receptors, TLR4 or lipopolysaccharide-binding/facilitating proteins, adaptors, interleukin-1 receptor associated kinases, kinases, chaperone molecules, transcription factors and inhibitors) were analysed for single- and multilocus associations with atopy [total and specific immunglobulin E (IgE) at 1,2 and 6,8 years] and asthma (6,8 years). A total of 3062 Dutch children from the birth cohorts PIAMA, PREVASC and KOALA (Allergenic study) were investigated. Chi-squared test, logistic regression and the data mining approach multifactor dimensionality reduction method (MDR) were used in analysis. Results:, Several genes in the TLR-related pathway were associated with atopy and/or asthma [e.g. IL1RL1, BPI, NOD1, NOD2 and MAP3K7IP1]. Multiple, single associations were found with the phenotypes under study. MDR analysis showed novel, significant gene,gene interactions in association with atopy and asthma phenotypes (e.g. IL1RL1 and TLR4 with sIgE to indoor allergens and IRAK1, NOD1 and MAP3K7IP1 with asthma). Interestingly, gene,gene interactions were identified with SNPs that did not have an effect on their own. Conclusion:, Our unbiased approach provided suggestive evidence for interaction between several TLR-related pathway genes important in atopy and/or asthma development and pointed to novel genes. [source] Effect of new and known 1,4-dihydropyridine derivatives on blood glucose levels in normal and streptozotocin-induced diabetic ratsCELL BIOCHEMISTRY AND FUNCTION, Issue 4 2004na Briede Abstract Analysis of the effect of several 1,4-DHP Ca2+ channel antagonists on experimental and clinical diabetes shows that structurally similar Ca2+ channel antagonists can exert opposite effects on Ca2+ influx, glucose homeostasis and insulin secretion. The influence of the Ca2+ channel antagonists on pancreatic , cell functions is dependent on lipophilicity, interactions with the cell membrane lipid bilayer, with SNAREs protein complexes in cell and vesicle membranes, with intracellular receptors, bioavailability and time of elimination from several organs and the bloodstream. In the present work we studied the effect at several doses of new compounds synthesized in the Latvian Institute of Organic Synthesis on blood glucose levels in normal and STZ-induced diabetic rats. The compounds tested were: 1,4-DHP derivatives cerebrocrast (1), etaftoron (2), OSI-1190 (3), OSI-3802 (4), OSI-2954 (5) and known 1,4-DHP derivatives: niludipine (6), nimodipine (7) and nicardipine (8) which possess different lipophilicities. Analysis of the structure,function relationships of the effect of 1,4-DHP derivatives on glucose metabolism showed that cerebrocrast could evoke qualitative differences in activity. Insertion of an OCHF2 group in position 2 of the 4-phenylsubstituent and propoxyethylgroup R in ester moieties in positions 3 and 5 of the DHP structure, as well as an increase in the number of carbon atoms in the ester moiety, significantly modified the properties of the compound. Thereby cerebrocrast acquired high lipophilicity and membranotropic properties. Cerebrocrast, in a single administration at low doses (0.05 and 0.5,mg,kg,1, p.o.), significantly decreased the plasma level of glucose in normal rats and in STZ-induced diabetic rats returned plasma glucose to basal levels. This effect was characterized by a slow onset and a powerful long-lasting influence on glucose metabolism, especially in STZ-induced diabetic rats. Copyright © 2004 John Wiley & Sons, Ltd. [source] ER quality control of immune receptors and regulators in plantsCELLULAR MICROBIOLOGY, Issue 6 2010Yusuke Saijo Summary Like in animals, cell surface and intracellular receptors mediate immune recognition of potential microbial intruders in plants. Membrane-localized pattern recognition receptors (PRRs) initiate immune responses upon perception of cognate microbe-associated molecular patterns (MAMPs). MAMP-triggered immunity provides a first line of defence that restricts the invasion and propagation of both adapted and non-adapted pathogens. The Leu-rich repeat (LRR) receptor protein kinases (RKs) define a major class of trans-membrane receptors in plants, of which some members are engaged in MAMP recognition and/or defence signalling. The endoplasmic reticulum (ER) quality control (QC) systems monitor N-glycosylation and folding states of the extracellular, ligand-binding LRR domains of LRR-RKs. Recent progress reveals a critical role of evolutionarily conserved ERQC components for different layers of plant immunity. N-glycosylation appears to play a role in ERQC fidelity rather than in ligand binding of LRR-RKs. Moreover, even closely related PRRs show receptor-specific requirements for N-glycosylation. These findings are reminiscent of the earlier defined function of the cytosolic chaperon complex for LRR domain-containing intracellular immune receptors. QC of the LRR domains might provide a basis not only for the maintenance but also for diversification of recognition specificities for immune receptors in plants. [source] |