Intracellular Pool (intracellular + pool)

Distribution by Scientific Domains


Selected Abstracts


Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2007
Je Won Park
Abstract A method employing silicone oil density centrifugation, solid-phase extraction (SPE) cleanup, and LC-ESI-MS/MS analysis was developed for the rapid, selective, sensitive, and quantitative detection of an intracellular pool of short organic acid-CoA esters in actinomycetes. The detection limit was determined to be approximately 0.8 pmol (1.2 ng/ml) for each standard CoA-ester analyzed by the present LC-ESI-MS/MS method. A selected ion chromatogram for a typical fragment ion (m/z 428) specific to CoA-esters enabled the detection of eight intracellular CoA-esters involved in both primary and secondary metabolisms. The application of this method to bacterial metabolomic study is demonstrated by the profiling of the intracellular CoA-ester pools in the wild-type Streptomyces venezuelae strain producing polyketide antibiotics (methymycin and pikromycin), a polyketide synthase (PKS)-deleted S. venezuelae mutant, and a S. venezuelae mutant expressing the heterologous PKS genes. By quantifying the individual CoA-esterlevel in three different genotypes of the S. venezuela e strain, further insight could be gained into the role of CoA-estersin polyketide biosynthesis. This analytical approach can be extended to the quantification of the size and composition of in vivo CoA-ester pools in various microbes, and can provide a detailed understanding of the relationship between the in vivo CoA-ester pool and the production of pharmaceutically important polyketides. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: Critical update and emerging trends

MEDICINAL RESEARCH REVIEWS, Issue 4 2007
Valérie Capra
Abstract Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors. © 2006 Wiley Periodicals, Inc. Med Res Rev, 27, No. 4, 469,527, 2007 [source]


Smooth muscle contraction induced by Indigofera dendroides leaf extracts may involve calcium mobilization via potential sensitive channels

PHYTOTHERAPY RESEARCH, Issue 7 2003
S. Amos
Abstract The contractile effects of the aqueous extract of the leaves of Indigofera dendroides (ID) were studied on the gastrointestinal motility in mice and isolated smooth muscle preparations obtained from rats and guinea pigs. The contractile effects of 10,6 M acetylcholine, 80 mM KCl and 1.6 mg/ml ID were measured on the rat ileal smooth muscle exposed to calcium-free buffer or physiological solution, to determine the calcium pools mobilized by extract for activation of contraction. Acute toxicity test (LD50) was also carried out in mice. The result showed that ID (0.05,3.2 mg/ml) produced a concentration-dependent contraction of the guinea pig and rat ileum. These responses were not blocked by mepyramine (2.49 × 10,9 M), verapamil (8.14 × 10,9 M), or pirenzepine (4.7 × 10,7 M), but were blocked completely by atropine (2.92 × 10,9 M). A signi.cant increase in propulsion of gastrointestinal motility was observed. Acetylcholine, KCl and ID produced contractions in Ca2+ free media. The phasic components of the contractile responses to Ach as well as the tonic component of K+ and ID-induced contractions were relatively resistant to short periods of calcium-free exposure. Ach, K+ and ID still caused contractions in the presence of verapamil. The data revealed that ID-induced contractions were not mediated by histaminergic receptors, calcium channels, M1 muscarinic receptors. It also suggests that Ach mobilize Ca from some tightly bound or intracellular pool, whereas high K+ and ID may mobilize Ca from some superficial or loosely-bound pool. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2009
Susana Gonçalves
Mannosylglycerate (MG) is a compatible solute that is widespread in marine organisms that are adapted to hot environments, with its intracellular pool generally increasing in response to osmotic stress. These observations suggest that MG plays a relevant role in osmoadaptation and thermoadaptation. The pathways for the synthesis of MG have been characterized in a number of thermophilic and hyperthermophilic organisms. Mannosyl-3-phosphoglycerate synthase (MpgS) is a key enzyme in the biosynthesis of MG. Here, the purification, crystallization and preliminary crystallographic characterization of apo MpgS from Thermus thermophilus HB27 are reported. The addition of Zn2+ to the crystallization buffer was essential in order to obtain crystals. The crystals belonged to one of the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = b = 113, c = 197,Å. Diffraction data were obtained to a resolution of 2.97,Å. [source]


Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010
Mohammad A. Asadollahi
Abstract The mevalonate pathway in the yeast Saccharomyces cerevisiae was deregulated in order to enhance the intracellular pool of farnesyl diphosphate (FPP), the direct precursor for the biosynthesis of sesquiterpenes. Over-expression of the catalytic domain of HMG1, both from the genome and plasmid, resulted in higher production of cubebol, a plant originating sesquiterpene, and increased squalene accumulation. Down-regulation of ERG9 by replacing its native promoter with the regulatable MET3 promoter, enhanced cubebol titers but simultaneous over-expression of tHMG1 and repression of ERG9 did not further improve cubebol production. Furtheremore, the concentrations of squalene and ergosterol were measured in the engineered strains. Unexpectedly, significant accumulation of squalene and restoring the ergosterol biosynthesis were observed in the ERG9 repressed strains transformed with the plasmids harboring cubebol synthase gene. This could be explained by a toxicity effect of cubebol, possibly resulting in higher transcription levels for the genes under control of MET3 promoter, which could lead to accumulation of squalene and ergosterol. Biotechnol. Bioeng. 2010; 106: 86,96. © 2010 Wiley Periodicals, Inc. [source]


Histamine-induced Ca2+ entry in human astrocytoma U373 MG cells: Evidence for involvement of store-operated channels

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2008
Margarita Barajas
Abstract Glial and glia-derived cells express a variety of receptors for neurotransmitters and hormones, the majority of which evoke both Ca2+ release from intracellular stores and Ca2+ entry across the plasma membrane. We investigated the links between histamine H1 receptor activation, Ca2+ release from intracellular stores and Ca2+ influx in human astrocytoma U373 MG cells. Histamine, through a H1 receptor-mediated effect, evoked an increase in cytoplasmic free calcium concentration ([Ca2+]i) that occurred in two phases: an initial, transient, increase owing to Ca2+ mobilization from intracellular pools, and a second, sustained increase dependent on both Ca2+ influx and continuous receptor occupancy. The characteristics of histamine-induced increases in [Ca2+]i were similar to the capacitative entry evoked by emptying of the Ca2+ stores with thapsigargine, and different from that observed when Ca2+ influx was activated with OAG (1-oleoyl-2-acetyl- sn -glycerol), a diacylglycerol (DAG) analog. OAG application or increased endogenous DAG, resulting from DAG kinase inhibition, reduced the histamine-induced response. Furthermore, activation of the DAG target, protein kinase C (PKC), by TPA (12-O-tetradecanoyl 4,-phorbol 13,-acetate) resulted in inhibition of the histamine-induced Ca2+ response, an action prevented by PKC inhibitors. By using reverse transcriptase,polymerase chain reaction analysis, mRNAs for transient receptor potential channels (TRPCs) 1, 4, and 6 as well as for STIM1 (stromal-interacting molecule) and Orai1 were found to be expressed in the U373 MG cells, and confocal microscopy using specific antibodies revealed the presence of the corresponding proteins. Therefore, TRPCs may be candidate proteins forming store-operated channels in the U373 MG cell line. Further, our results confirm the involvement of PKC in the regulation of H1 receptor-induced responses and point out to the existence of a feedback mechanism acting via PKC to limit the increase in [Ca2+]i. © 2008 Wiley-Liss, Inc. [source]


A novel flow cytometric analysis for platelet activation on immobilized von Willebrand factor or fibrillar collagen

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2003
S. Kao
Summary., Under flow conditions, platelets adhere singly or in small aggregates on von Willebrand factor (VWF)-coated surfaces, but form large aggregates on immobilized fibrillar collagen. We developed a novel flow cytometric analysis to study the mechanisms underlying these distinct platelet deposition patterns. Flow cytometry was used to measure platelet activation after platelet adherence onto microspheres coated with either VWF or collagen fibrils. Two representative indices were calculated to quantify activated GpIIb,IIIa and P-selectin expression on adherent platelets. The signaling pathways responsible for platelet activation after interacting with fibrillar collagen were elucidated using various inhibitors. An in vitro endothelial cell wound model was also used to study the roles of VWF and fibrillar collagen in platelet deposition onto subendothelial matrixes. The adherent platelets on fibrillar collagen express more activated GpIIb,IIIa and P-selectin than those on VWF. Activation of GpIIb,IIIa and expression of P-selectin after platelet interaction with collagen occur via different intracellular signaling pathways; however, Ca2+ released from intracellular pools is common to both phenomena. Platelets were deposited singly or formed small aggregates on the endothelial cell wounded area, and this deposition pattern was dependent on VWF molecules secreted by endothelial cells and the absence of subendothelial collagen fibrils. As less activated GpIIb,IIIa and P-selectin are expressed after platelets interact with immobilized VWF alone, subsequent flowing platelet recruitment is minimal. Collagen fibrils, however, can activate adherent platelets sufficiently to promote the formation of large platelet aggregates. [source]


Urea-based two-dimensional electrophoresis of beta-amyloid peptides in human plasma: Evidence for novel A, species

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 20 2007
Juan Manuel Maler
Abstract The detailed analysis of ,-amyloid (A,) peptides in human plasma is still hampered by the limited sensitivity of available mass spectrometric methods and the lack of appropiate ELISAs to measure A, peptides other than A,1,38, A,1,40, and A,1,42. By combining high-yield A, immuno­ precipitation (IP), IEF, and urea-based A,-SDS-PAGE-immunoblot, at least 30 A,-immuno­reactive spots were detected in human plasma samples as small as 1.6,mL. This approach clearly resolved A, peptides A,1,40, A,1-42, A,1-37, A,1-38, A,1-39, the N-truncated A,2,40, A,2,42, and, for the first time, also A,1,41. Relative quantification indicated that A,1,40 and A,1,42 accounted for less than 60% of the total amount of A, peptides in plasma. All other A, peptides appear to be either C-terminally or N-terminally truncated forms or as yet uncharacterized A, species which migrated as trains of spots with distinct pIs. The A, pattern found in cerebrospinal fluid (CSF) was substantially less complex. This sensitive method (2-D A,-WIB) might help clarifying the origin of distinct A, species from different tissues, cell types, or intracellular pools as well as their amyloidogenicity. It might further help identifying plasma A, species suitable as biomarkers for the diagnosis of Alzheimer's disease (AD). [source]


Expression of CCL5 (RANTES) and CCR5 in prostate cancer,

THE PROSTATE, Issue 2 2006
Gayle G. Vaday
Abstract Background Expression of the inflammatory chemokine CCL5 (RANTES) by tumor cells is thought to correlate with the progression of several cancers. CCL5 was shown to induce breast cancer cell migration, mediated by the receptor CCR5. A CCR5 antagonist was demonstrated to inhibit experimental breast tumor growth. Recently, CCL5 and CCR5 mRNA expression was reported in prostate cancer (PCa) tissues. Herein, we characterized CCL5 and CCR5 expression in cultures of PCa cells and explored possible functions of CCL5 in PCa progression. Methods Quantitative RT-PCR, ELISA, and immunohistochemical staining were performed to examine CCL5 expression in prostate cell lines. CCR5 expression was measured by flow cytometry. Proliferation and invasion assays were performed to determine potential functions of CCL5 and CCR5 in PCa. Results Expression of CCL5 mRNA and protein was found in human PCa cell lines (PC-3; DU-145; LNCaP) and primary prostate adenocarcinoma cells. CCL5 and CCR5 were also detected in human PCa tissues. CCR5 expression was demonstrated on the cell surface of PCa cells, as well as in intracellular pools. Incubation with CCL5 (10,100 ng/ml) induced PCa cell proliferation, and the CCR5 antagonist TAK-779 inhibited CCL5-induced proliferation. CCL5 was found to stimulate PCa cell invasion, and TAK-779 blocked the effects of CCL5. Conclusions In light of evidence that inflammation influences the pathogenesis of PCa, these results suggest that inflammatory chemokines, such as CCL5, expressed by prostate cells may act directly on the growth and survival of PCa cells. Chemokine receptor antagonists may thus block autocrine mechanisms of PCa progression. Published 2005 Wiley-Liss, Inc. [source]


Modeling and optimization of hairy root growth in fed-batch process

BIOTECHNOLOGY PROGRESS, Issue 3 2010
Francis Mairet
Abstract This article proposes a feeding strategy based on a kinetic model to enhance hairy roots growth. A new approach for modeling hairy root growth is used, considering that there is no nutrient limitation thanks to an appropriate feeding, and the intracellular pools are supposed to be always saturated. Thus, the model describes the specific growth rate from extracellular concentration of the major nutrients and nutrient uptakes depend on biomass growth. An optimized feeding strategy was determined thanks to the model to maintain the major nutrient levels at their optimum assuming optimal initial concentrations. The optimal feed rate is computed in open loop using kinetic model prediction or in closed loop using conductivity measurements to estimate biomass growth. Datura innoxia was chosen as the model culture system. Shake flask cultures were used to calibrate the model. Finally, cultures in bioreactor were performed to validate the model and the control laws. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]