Intracellular Components (intracellular + component)

Distribution by Scientific Domains


Selected Abstracts


Dok protein family members are involved in signaling mediated by the type 1 Fc, receptor

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2003
Jakub Abramson
Abstract Aggregation of type 1 Fc, receptors (Fc,RI) on mast cells activates a biochemical cascade that culminates in secretion of inflammatory mediators, as well as in changes of cell morphology and adhesion properties. Some of the intracellular components involved in the early coupling events are still unidentified. Here we show that two adaptor proteins, downstream of tyrosine kinases (Dok)-1 and Dok-2, are involved in the Fc,RI coupling cascade in the rat mucosal-type mast cells of the RBL-2H3 line. Dok-1 is found to be constitutively associated with the Fc,RI, even in untreated cells, and this interaction is not affected by this receptor's aggregation. Both Dok forms undergo a fast and relatively long-term tyrosyl-phosphorylation. This modification of Dok-1 increases its association with RasGAP, suggesting that it is modulating Ras activity. Indeed, we further found that Fc,RI-mediated Ras/Raf1/Erk signaling as well as the de novo synthesis of TNF-, are markedly reduced in cells overexpressing Dok-1. Moreover, Fc,RI clustering causes both Dok-1 and Dok-2 to become docking sites for other signaling molecules including Nck, CrkL and Cas. The latter proteins have been implicated particularly in regulation of the actin-cytoskeletal reorganization. Hence Dok-1/Dok-2 may also be involved in the Fc,RI-stimulated processes of cytoskeleton rearrangement required for cell adhesion, membrane ruffling and exocytosis. [source]


Chronological and replicative lifespan of polyploid Saccharomyces cerevisiae (syn. S. pastorianus)

FEMS YEAST RESEARCH, Issue 2 2003
Dawn L Maskell
Abstract Chronological lifespan may be defined as the result of accumulation of irreversible damage to intracellular components during extended stationary phase, compromising cellular integrity and leading to death and autolysis. In contrast, replicative lifespan relates to the number of divisions an individual cell has undertaken before entering a non-replicative state termed senescence, leading to cell death and autolysis. Both forms of lifespan have been considered to represent models of ageing in higher eukaryotes, yet the relation between chronologically and replicatively aged populations has not been investigated. In this study both forms of lifespan have been investigated in Saccharomyces cerevisiae (Syn. S. pastorianus) to establish the relationship between chronological and replicative ageing. [source]


Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 5 2001
Tiphaine Monsinjon
Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called ,reperfusion injury' is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner. [source]


Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria

JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2003
S.E. Walsh
Abstract Aims: This study investigates the antimicrobial activity and mode of action of two natural products, eugenol and thymol, a commonly utilized biostatic agent, triclocarban (TCC), and two surfactants, didecyldimethylammonium chloride (DDDMAC) and C10,C16 alkyldimethyl amine N -oxides (ADMAO). Methods and Results: Methods used included: determination of minimum inhibitory concentrations (MICs), lethal effect studies with suspension tests and the investigation of sub-MIC concentrations on growth of E. coli, Staph. aureus and Ps. aeruginosa using a Bioscreen microbiological analyser. Leakage of intracellular constituents and the effects of potentiating agents were also investigated. Only DDDMAC was bactericidal against all of the organisms tested. Eugenol, thymol and ADMAO showed bacteriostatic and bactericidal activity, but not against Ps. aeruginosa. TCC was only bacteristatic against Staph. aureus, but like the other agents, it did affect the growth of the other organisms in the Bioscreen experiments. All of the antimicrobial agents tested were potentiated by the permeabilizers to some extent and leakage of potassium was seen with all of the agents except TCC. Conclusions: DDDMAC was bactericidal against all organisms tested and all compounds had some bacteriostatic action. Low level static effects on bacterial growth were seen with sub-MIC concentrations. Membrane damage may account for at least part of the mode of action of thymol, eugenol, DDDMAC and ADMAO. Significance and Impact of the Study: The ingredients evaluated demonstrated a range of bactericidal and bacteriostatic properties against the Gram-negative and -positive organisms evaluated and the membrane (leakage of intracellular components) was implicated in the mode of action for most (except TCC). Sub-MIC levels of all ingredients did induce subtle effects on the organisms which impacted bacterial growth, even for those which had no true inhibitory effects. [source]


Ultra scale-down studies of the effect of flow and impact conditions during E. coli cell processing

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2006
G. Chan
Abstract The ability to recover cells from a fermentation broth in an intact form can be an important criterion for determining the overall performance of a recovery and purification sequence. Disruption of the cells can lead to undesired contamination of an extracellular product with intracellular components and vice versa loss of intracellular products may occur. In particular, the value of directed location of a product in the periplasmic space of say Escherichia coli (E. coli) would be diminished by such premature non-selective cell disruption. Several options exist for cell recovery/removal; namely centrifugation, in batch or continuous configuration, filtration or membrane operations, and in selected cases expanded beds. The choice of operation is dependant on many variables including the impact on the overall process sequence. In all cases, the cells are exposed to shear stresses of varying levels and times and additionally such environments exist in ancillary operations such as pumping, pipe flow, and control valves. In this study, a small-scale device has been designed to expose cells to controlled levels of shear, time and impact in a way that seeks to mimic those effects that may occur during full-scale processes. The extent of cell breakage was found to be proportional to shear stress. An additional level of breakage occurred due to the jet impacting on the collecting surface. Here it was possible to correlate the additional breakage with the impact velocity, which is a function of the distance that the jet travels before meeting the collection surface and the initial jet velocity. © 2006 Wiley Periodicals, Inc. [source]