Home About us Contact | |||
Intracellular Calcium Increase (intracellular + calcium_increase)
Selected AbstractsIntracellular Calcium Increase in Epileptiform Activity: Modulation by Levetiracetam and LamotrigineEPILEPSIA, Issue 7 2004Antonio Pisani Summary:,Purpose: Alterations in neuronal calcium (Ca2+) homeostasis are believed to play an essential role in the generation and propagation of epileptiform events. Levetiracetam (LEV) and lamotrigine (LTG), novel antiepileptic drugs (AEDs), were tested on epileptiform events and the corresponding elevations in intracellular Ca2+ concentration ([Ca2+]i) recorded from rat neocortical slices. Methods: Electrophysiological recordings were performed from single pyramidal neurons from a slice preparation. Spontaneous epileptiform events consisting of long-lasting, repetitive paroxysmal depolarization shifts (PDSs) and interictal spike activity were induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine. Simultaneously, microfluorimetric measurements of [Ca2+]i were performed. Optical imaging with Ca2+ indicators revealed a close correlation between Ca2+ transients and epileptiform events. Results: Both LEV and LTG were able to reduce both amplitude and duration of PDSs, as well as the concomitant elevation in [Ca2+]i, in a dose-dependent fashion. Whole-cell patch-clamp recordings from isolated neocortical neurons revealed that LEV significantly reduced N-, and partially P/Q-type high-voltage-activated (HVA) Ca2+ currents, whereas sodium currents were unaffected. Interestingly, the inhibitory effects of LEV were mimicked and occluded by LTG or by a combination of ,-conotoxin GVIA and ,-agatoxin IVA, selective blockers of N- and P/Q-type HVA channels, respectively, suggesting a common site of action for these AEDs. Conclusions: These results demonstrate that large, transient elevations in neuronal [Ca2+]i correlate to epileptiform discharges. The antagonistic effects of LEV and LTG on [Ca2+]i overload might represent the basis for their anticonvulsant efficacy and could preserve neuronal viability. [source] Regulation of Wnt/,-catenin pathway by cPLA2, and PPAR,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Chang Han Abstract Cytosolic phospholipase A2, (cPLA2,) is a rate-limiting key enzyme that releases arachidonic acid (AA) from membrane phospholipid for the production of biologically active lipid mediators including prostaglandins, leukotrienes and platelet-activating factor. cPLA2, is translocated to nuclear envelope in response to intracellular calcium increase and the enzyme is also present inside the cell nucleus; however, the biological function of cPLA2, in the nucleus remains unknown. Here we show a novel role of cPLA2, for activation of peroxisome proliferator-activated receptor-, (PPAR,) and ,-catenin in the nuclei. Overexpression of cPLA2, in human cholangiocarcinoma cells induced the binding of PPAR, to ,-catenin and increased their association with the TCF/LEF response element. These effects are inhibited by the cPLA2, siRNA and inhibitors as well as by siRNA knockdown of PPAR,. Overexpression of PPAR, or treatment with the selective PPAR, ligand, GW501516, also increased ,-catenin binding to TCF/LEF response element and increased its reporter activity. Addition of AA and GW501516 to nuclear extracts induced a comparable degree of ,-catenin binding to TCF/LEF response element. Furthermore, cPLA2, protein is present in the PPAR, and ,-catenin binding complex. Thus the close proximity between cPLA2, and PPAR, provides a unique advantage for their efficient functional coupling in the nucleus, where AA produced by cPLA2, becomes immediately available for PPAR, binding and subsequent ,-catenin activation. These results depict a novel interaction linking cPLA2,, PPAR, and Wnt/,-catenin signaling pathways and provide insight for further understanding the roles of these key molecules in human cells and diseases. J. Cell. Biochem. 105: 534,545, 2008. © 2008 Wiley-Liss, Inc. [source] Scutellarin-induced endothelium-independent relaxation in rat aortaPHYTOTHERAPY RESEARCH, Issue 11 2008Zhenwei Pan Abstract Scutellarin is a flavonoid extracted from the traditional Chinese herb, Erigeron breviscapus Hand Mazz. In the present study, the vasorelaxant effects of scutellarin and the underlying mechanism were investigated in isolated rat aorta. Scutellarin (3, 10, 30, 100 µm) caused a dose-dependent relaxation in both endothelium-intact and endothelium-denuded rat aortic rings precontracted with noradrenaline bitartrate (IC50 = 7.7 ± 0.6 µm), but not with potassium chloride. Tetraethylammonium, glibenclamide, atropine, propranolol, indomethacin and N(G)-nitro- l -arginine methyl ester had no influence on the vasorelaxant effect of scutellarin, which further excluded the involvement of potassium channels, muscarinic receptor, nitric oxide pathway and prostaglandin in this effect. Pretreatment with scutellarin decreased the tonic phase, but not the phasic phase of the noradrenaline bitartrate induced tension increment. Scutellarin also alleviated Ca2+ -induced vasoconstriction in Ca2+ -depleted/noradrenaline bitartrate pretreated rings in the presence of voltage-dependent calcium channel blocker verapamil. The noradrenaline bitartrate evoked intracellular calcium increase was inhibited by scutellarin. Scutellarin had no effect on phorbol-12,13-diacetate induced contraction in a calcium-free bath solution. These results showed that scutellarin could relax thoracic artery rings in an endothelium-independent manner. The mechanism seems to be the inhibition of extracellular calcium influx independent of the voltage-dependent calcium channel. Copyright © 2008 John Wiley & Sons, Ltd. [source] Ethanol-Induced Cephalic Apoptosis Requires Phospholipase C-Dependent Intracellular Calcium SignalingALCOHOLISM, Issue 3 2003Katherine A. Debelak-Kragtorp Background: Although the ability of ethanol to elicit neural crest cell apoptosis is well documented, the initial target of ethanol in these cells, and the biochemical pathway leading to their apoptosis, have yet to be determined. Recent work in preimplantation mouse embryos demonstrates that ethanol induces a phospholipase-C (PLC)-dependent calcium transient that mediates ethanol's effects. We tested whether a similar effect on calcium and PLC is involved in ethanol-induced neural crest apoptosis. Methods: Chicken embryos were collected and loaded with Fluo-3-AM to assess the effects of ethanol on intracellular calcium levels. Pharmacological agents were used to determine the sources and mechanism of intracellular calcium increases. In separate experiments, embryos were treated in ovo with pharmacological modulators of calcium signaling prior to ethanol exposure, and resulting levels of cell death were assessed by using the vital dye acridine orange. Results: Ethanol exposure caused a localized increase in intracellular calcium levels in embryonic neural folds within 15 sec of ethanol exposure. Ethanol-induced apoptosis was specifically blocked by chelation of intracellular calcium before ethanol exposure. Pretreatment with the PLC inhibitor U73122 blocked ethanol-induced apoptosis as well as the intracellular calcium transient. Depletion of extracellular calcium resulted in a partial block of ethanol-induced apoptosis. Conclusions: Ethanol exposure alters calcium signaling within the neurulation-stage chicken embryo in a PLC-dependent manner. Increases in intracellular calcium and PLC activity are necessary for ethanol's induction of apoptosis within cephalic populations. These effects likely represent an early and crucial event in the pathway leading to ethanol-induced cell death. [source] Expression and localization of the µ-opioid receptor (MOR) in the equine cumulus,oocyte complex and its involvement in the seasonal regulation of oocyte meiotic competence,MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 8 2008Maria Elena Dell'Aquila Abstract The µ-opioid receptor (MOR) was identified in equine oocytes, cumulus and granulosa cells. By RT-PCR, a 441bp fragment was observed. By immunoblotting, a 65 kDa band was detected in samples of winter anestrous whereas in cells recovered in breeding season, two bands, 65 and 50 kDa, were found. The 65 kDa band was significantly more intense in winter anestrous specimens. In samples recovered in the breeding season, this band significantly decreased with the raise of follicle size and was heavier in compact oocytes and cumulus cells. The protein was localized on the oolemma and within the cytoplasm of oocytes and cumulus cells. In vitro oocyte maturation rate (MR), analyzed by confocal microscopy for nuclear chromatin, microfilaments and microtubules, was reduced after the addition of 3,×,10,8 M ,-endorphin in medium without additional hormones. Inhibitory effects of 10,3 M Naloxone in oocytes collected in anestrous and spring transition were observed, both in presence and absence of hormones added to culture medium. Increased MRs were observed in oocytes collected in anestrous and cultured in presence of 10,8 M Naloxone. The exposure to 10,3 M Naloxone induced significant intracellular calcium increases in cumulus cells recovered all over the year. ,-Endorphin 3,×,10,8 M induced significant calcium increases only in cumulus cells recovered in fall transition and anestrous. Naloxone 10,8 M did not induce intracellular calcium modifications. We conclude that the MOR is differentially expressed in equine cumulus,oocyte complexes in the different seasons of the year and plays a role in the seasonal regulation of meiotic competence of equine oocytes. Mol. Reprod. Dev. 75: 1229,1246, 2008. © 2008 Wiley-Liss, Inc. [source] |