Intracellular Acidification (intracellular + acidification)

Distribution by Scientific Domains


Selected Abstracts


The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i -independent H+i -sensitive signalling

ACTA PHYSIOLOGICA, Issue 1-2 2006
S. N. Orlov
Abstract Na/K-ATPase is the only known target of cardiotonic steroids (CTS) identified in plants, amphibians and later on in several mammalian species, including human. We focus our review on recent data implicating CTS in the tissue-specific regulation of cell survival and death. In vascular smooth muscle cells, CTS inhibited cell death triggered by apoptotic stimuli via a novel Na+i -mediated, Ca2+i -independent mechanism of expression of antiapoptotic genes, including mortalin. In contrast, exposure to CTS in vascular endothelial and renal epithelial cells led to cell death, showing combined markers of apoptosis and necrosis. This mode of cell death, termed oncosis, is caused by CTS interaction with Na/K-ATPase but is independent of the inhibition of Na/K-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. The intermediates of intracellular signalling involved in Na+i, K+i -independent oncosis of CTS-treated cells remain unknown. Recently, we found that this mode of cell death can be protected by modest intracellular acidification via the expression of H+i -sensitive genes. The molecular origin of intracellular Na+ and H+ sensor involvement in the development of apoptosis and oncosis is currently under investigation. [source]


The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae

FEMS YEAST RESEARCH, Issue 1 2001
Filip Rolland
Abstract Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low. [source]


pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2010
Angelo De Milito
Abstract Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg,1) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients. [source]


Regulatory Mechanisms and Physiological Relevance of a Voltage-Gated H+ Channel in Murine Osteoclasts: Phorbol Myristate Acetate Induces Cell Acidosis and the Channel Activation,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003
Hiroyuki Mori
Abstract The voltage-gated H+ channel is a powerful H+ extruding mechanism of osteoclasts, but its functional roles and regulatory mechanisms remain unclear. Electrophysiological recordings revealed that the H+ channel operated on activation of protein kinase C together with cell acidosis. Introduction: H+ is a key signaling ion in bone resorption. In addition to H+ pumps and exchangers, osteoclasts are equipped with H+ conductive pathways to compensate rapidly for pH imbalance. The H+ channel is distinct in its strong H+ extrusion ability and voltage-dependent gatings. Methods: To investigate how and when the H+ channel is available in functional osteoclasts, the effects of phorbol 12-myristate 13-acetate (PMA), an activator for protein kinase C, on the H+ channel were examined in murine osteoclasts generated in the presence of soluble RANKL (sRANKL) and macrophage-colony stimulating factor (M-CSF). Results and Conclusions: Whole cell recordings clearly showed that the H+ current was enhanced by increasing the pH gradient across the plasma membrane (,pH), indicating that the H+ channel changed its activity by sensing ,pH. The reversal potential (Vrev) was a valuable tool for the real-time monitoring of ,pH in clamped cells. In the permeabilized patch, PMA (10 nM-1.6 ,M) increased the current density and the activation rate, slowed decay of tail currents, and shifted the threshold toward more negative voltages. In addition, PMA caused a negative shift of Vrev, suggesting that intracellular acidification occurred. The PMA-induced cell acidosis was confirmed using a fluorescent pH indicator (BCECF), which recovered quickly in a K+ -rich alkaline solution, probably through the activated H+ channel. Both cell acidosis and activation of the H+ channel by PMA were inhibited by staurosporine. In ,80% of cells, the PMA-induced augmentation in the current activity remained after compensating for the ,pH changes, implying that both ,pH-dependent and -independent mechanisms mediated the channel activation. Activation of the H+ channel shifted the membrane potential toward Vrev. These data suggest that the H+ channel may contribute to regulation of the pH environments and the membrane potential in osteoclasts activated by protein kinase C. [source]


The effect of intracellular acidification on the relationship between cell volume and membrane potential in amphibian skeletal muscle

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
James A. Fraser
The relationship between cell volume (Vc) and membrane potential (Em) in Rana temporaria striated muscle fibres was investigated under different conditions of intracellular acidification. Confocal microscope xz -scanning monitored the changes in Vc, whilst conventional KCl and pH-sensitive microelectrodes measured Em and intracellular pH (pHi), respectively. Applications of Ringer solutions with added NH4Cl induced rapid reductions in Vc that rapidly reversed upon their withdrawal. These could be directly attributed to the related alterations in extracellular tonicity. However: (1) a slower and persistent decrease in Vc followed the NH4Cl withdrawal, leaving Vc up to 10% below its resting value; (2) similar sustained decreases in resting Vc were produced by the addition and subsequent withdrawal of extracellular solutions in which NaCl was isosmotically replaced with NH4Cl; (3) the same manoeuvres also produced a marked intracellular acidification, that depended upon the duration of the preceding exposure to NH4Cl, of up to 0.53 ± 0.10 pH units; and (4) the corresponding reductions in Vc similarly increased with this exposure time. These reductions in Vc persisted and became more rapid with Cl, deprivation, thus excluding mechanisms involving either direct or indirect actions of pHi upon Cl, -dependent membrane transport. However they were abolished by the Na+,K+ -ATPase inhibitor ouabain. The Em changes that accompanied the addition and withdrawal of NH4+ conformed to a Nernst equation modified to include realistic NH4+ permeability terms, and thus the withdrawal of NH4+ restored Em to close to control values despite a persistent change in Vc. Finally these Em changes persisted and assumed faster kinetics with Cl, deprivation. The relative changes in Vc, Em and pHi were compared to predictions from the recent model of Fraser and Huang published in 2004 that related steady-state values of Vc and Em to the mean charge valency (zx) of intracellular membrane-impermeant anions, X,i. By assuming accepted values of intracellular buffering capacity (,i), intracellular acidification was shown to produce quantitatively predictable decreases in Vc. These findings thus provide experimental evidence that titration of the anionic zx by increased intracellular [H+] causes cellular volume decrease in the presence of normal Na+,K+ - ATPase activity, with Cl, -dependent membrane fluxes only influencing the kinetics of such changes. [source]


Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2003
Virginie Aires
Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N -dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+ -free (0% Ca2+) and Ca2+ -containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a ,COOH group induced intracellular acidification, but this fatty acid with a ,COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. British Journal of Pharmacology (2003) 140, 1217,1226. doi:10.1038/sj.bjp.0705563 [source]