Intra-arterial Injection (intra-arterial + injection)

Distribution by Scientific Domains


Selected Abstracts


A new type of susceptibility-artefact-based magnetic resonance angiography: intra-arterial injection of superparamagnetic iron oxide particles (SPIO) A Resovist® in combination with TrueFisp imaging: a feasibility study

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 5 2006
Robbert M. Maes
Abstract The goal of this study was to evaluate the use of super paramagnetic particles of iron oxide (SPIO) as a dark blood contrast agent, in combination with a bright blood steady-state free precession sequence for magnetic resonance angiography (MRA), in an animal model. The original concentration of the SPIO of 500,mmol Fe/l and dilutions to 250, 125, 60, 30, 10 and 5,mmol Fe/l were intra-arterially injected into the aorta of a pig. Then the dilution of 10,mmol Fe/l was chosen for repeated intra-arterial injections into two pigs. During these intra-arterial SPIO injections MR images were acquired with a 1.5,T scanner. Signal intensity measurements were performed in the aorta. The signal-to-noise ratio during SPIO bolus passage was significantly less than during baseline conditions (Fisher's F -ratio 159.8, p,<,0.005) or the recovery signal-to-noise ratio (Fisher's F -ratio 144.6, p,<,0.005). Also, confirmation of flow distal to the catheter-tip position was possible. The use of SPIO as a dark blood agent in combination with a bright blood MR imaging sequence is feasible. Temporary loss of intraluminal signal occurs due to local decrease of the signal because of induction of local inhomogeneities after mixture the present blood and SPIO solution. It provides immediate information about blood flow distal to the catheter and is a potentially useful to guide intravascular MR-interventional procedures. Copyright © 2006 John Wiley & Sons Ltd. [source]


Transient locked-in syndrome resulting from stellate ganglion block in the treatment of patients with sudden hearing loss

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2003
M. Tüz
Stellate ganglion blockage (SGB) is a local anesthetic procedure intended to block the lower cervical and upper thoracic sympathetic chain and is one of the treatment modalities for a wide range of disorders such as sudden hearing loss, Menier's disease, stroke, sudden blindness, shoulder/hand syndrome and vascular headache. The complications of SGB are recurrent laryngeal or phrenic nerve block, pneumothorax, unconsciousness, respiratory paralysis, convulsions and sometimes severe arterial hypotension. We present a case with transient locked-in syndrome following SGB for the management of sudden hearing loss. The risk of an intra-arterial injection can be eliminated by rotating the needle, as is described in this report. [source]


Microvasculature of the human cerebral white matter: Arteries of the deep white matter

NEUROPATHOLOGY, Issue 2 2003
Hiroko Nonaka
The vascular architecture of the human cerebral deep white matter was studied using soft X-ray and diaphanized specimens, achieved by intra-arterial injection of barium and vascular stain respectively, and also by electron microscopic examination of the corrosion cast of arteries in normal adult brains. The deep white matter arteries passed through the cerebral cortex with a few branches to the cortex and ran straight through the white matter. The arteries concentrated ventriculopetally to the white matter around the lateral ventricle. Anastomoses were noted around the ventricular wall at the terminals of the deep white matter arteries. No centrifugal branches irrigating the periventricular white matter from the lenticulo-striate arteries were observed in the present study. The presence of anastomoses among the terminal branches of deep white matter arteries protects against ischemic change or infarction in this area from an occlusion of a single deep white matter artery. This may lead to development of terminal zone infarction from ischemia or vascular diseases, affecting multiple deep white matter arteries. The subcortical and deep white matter arteries had thick adventitial sheaths and large adventitial spaces in the white matter but not in the cortex. The presence or absence of the adventitial space is regarded as another characteristic difference between the arteries in the white matter and cortex. This difference may influence pathological changes in vascular lesions in these respective areas. [source]


Size and Aggregation of Corticosteroids Used for Epidural Injections

PAIN MEDICINE, Issue 2 2008
Richard Derby MD
ABSTRACT Objective., The purpose of this study was to document particulate size in commonly used corticosteroid preparations. Inadvertent injection of particulate corticosteroids into a vertebral or foraminal artery can cause brain and spinal cord embolic infarcts and the size of the particles could be directly related to the chance that a clinically significant infarct would occur. One might assume that corticosteroids with particles significantly smaller than red blood cells might be safer. Design., The following four types of corticosteroid preparations were used in various solutions and evaluated under light microscopy: dexamethasone sodium phosphate injection, triamcinolone acetonide injectable suspension, betamethasone sodium phosphate and betamethasone acetate injectable suspension, and methylprednisolone acetate injectable suspension. Results., Dexamethasone sodium phosphate particle size was approximately 10 times smaller than red blood cells and the particles did not appear to aggregate; even mixed with 1% lidocaine HCl solution and with contrast dye, the size of the particles were unchanged. Triamcinolone acetonide and betamethasone sodium phosphate showed variable sizes; some particles were larger than red blood cells, and aggregation of particles was evident. Methylprednisolone acetate showed uniformity in size and the majority were smaller than red blood cells which were not aggregated, but the particles were densely packed. Conclusions., Compared with the particulate steroid solutions, dexamethasone sodium phosphate had particles that were significantly smaller than red blood cells, had the least tendency to aggregation, and had the lowest density. These characteristics should significantly reduce the risk of embolic infarcts or prevent them from occurring after intra-arterial injection. Until shown otherwise in clinical studies, interventionalists might consider using dexamethasone or another corticosteroid preparation with similar high solubility and negligible particle size when performing epidural injections. [source]


Femoral intra-arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind limb

THE JOURNAL OF GENE MEDICINE, Issue 6 2005
Patrick Gonin
Abstract With the aim of simplifying recombinant-adeno-associated virus (rAAV) delivery in muscle, a new femoral intra-arterial technique was designed and tested in rodents (rats and mice). Two serotypes, several promoters and transgenes (reporter or therapeutic) were tested using this administration route. The new route is both easy to perform and efficient. Its usefulness as a tool to assess gene delivery constructs in the muscle was established in the context of recombinant AAV serotypes 1 and 2, and with the ubiquitous CMV and two muscle-specific (C5-12 and CK6) promoters. Both serum monitoring of a secreted protein (murine alkaline phosphatase: muSEAP) and slide staining were used to compare the different constructs. Significantly different patterns of expression in kinetics of expression (muSEAP) and homogeneity of fiber transduction (staining) were evidenced with the different promoters tested, and compared with intra-muscular expression patterns. Detailed studies of differential transduction in leg and thigh muscles showed equivalent efficacy, except in rectus femoris, and to a lesser extent in soleus. In light of these results and prior data, intra-arterially mediated gene transfer mechanism is discussed. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A new type of susceptibility-artefact-based magnetic resonance angiography: intra-arterial injection of superparamagnetic iron oxide particles (SPIO) A Resovist® in combination with TrueFisp imaging: a feasibility study

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 5 2006
Robbert M. Maes
Abstract The goal of this study was to evaluate the use of super paramagnetic particles of iron oxide (SPIO) as a dark blood contrast agent, in combination with a bright blood steady-state free precession sequence for magnetic resonance angiography (MRA), in an animal model. The original concentration of the SPIO of 500,mmol Fe/l and dilutions to 250, 125, 60, 30, 10 and 5,mmol Fe/l were intra-arterially injected into the aorta of a pig. Then the dilution of 10,mmol Fe/l was chosen for repeated intra-arterial injections into two pigs. During these intra-arterial SPIO injections MR images were acquired with a 1.5,T scanner. Signal intensity measurements were performed in the aorta. The signal-to-noise ratio during SPIO bolus passage was significantly less than during baseline conditions (Fisher's F -ratio 159.8, p,<,0.005) or the recovery signal-to-noise ratio (Fisher's F -ratio 144.6, p,<,0.005). Also, confirmation of flow distal to the catheter-tip position was possible. The use of SPIO as a dark blood agent in combination with a bright blood MR imaging sequence is feasible. Temporary loss of intraluminal signal occurs due to local decrease of the signal because of induction of local inhomogeneities after mixture the present blood and SPIO solution. It provides immediate information about blood flow distal to the catheter and is a potentially useful to guide intravascular MR-interventional procedures. Copyright © 2006 John Wiley & Sons Ltd. [source]


Intrinsic vasomotricity and adrenergic effects in a model of isolated rabbit eye

ACTA OPHTHALMOLOGICA, Issue 4 2009
Esmeralda Delgado
Abstract. Purpose:, We aimed to investigate the responsiveness of the ocular arteries to adrenergic drugs in a model of perfused isolated rabbit eye. Methods:, Rabbit external ophthalmic arteries (n = 15) in a head-mounted preparation were cannulated and the retinal and uveal vasculature perfused at a constant flow with warmed tyrode. The three-way polypropylene catheter was further connected to a pressure transducer and intraluminal pressure was taken as a measure of vascular resistance. Effects of intra-arterial injections of phenylephrine (group A, n = 5), prazosin (group B, n = 5) and phentolamine (group C, n = 5) on the recorded pressure were obtained. Student's paired- t test and one-way analysis of variance were used for statistical analysis (p < 0.05). Results:, Intrinsic vasomotricity was observed in all preparations prior to any drug administration. Phenylephrine produced an increase in total vascular resistance. Intrinsic vasomotricity became more evident, showing a lower frequency but higher amplitude of oscillations. Evoked vasomotor responses with phenylephrine (250 ,g/ml) were inhibited by intra-arterial administration of the selective ,1 -adrenergic antagonist, prazosin (0.5 mg/ml), as well as the non-selective ,-adrenergic antagonist phentolamine (6 mg/ml). Conclusions:, Rabbit external ophthalmic arteries showed spontaneous contractions under constant perfusion. Phenylephrine elicited a vasoconstrictor response that was inhibited by adrenergic antagonists. In addition, the intrinsic vasomotricity was enhanced by phenylephrine and blocked by adrenergic antagonists. These results show that under in vitro perfusion the territory presents similar responses to adrenergic drugs to those observed in in vivo models and also provides evidence of myogenic autoregulatory properties in the rabbit ophthalmic artery and/or choroid. [source]