Intersystem Crossing (intersystem + crossing)

Distribution by Scientific Domains


Selected Abstracts


Plasmonic Enhancement or Energy Transfer?

ADVANCED FUNCTIONAL MATERIALS, Issue 13 2009
Its Potential for Light-Emitting Devices, Lanthanide-Doped Silicate Glasses, On the Luminescence of Gold-, Silver-
Abstract With the technique of synchrotron X-ray activation, molecule-like, non-plasmonic gold and silver particles in soda-lime silicate glasses can be generated. The luminescence energy transfer between these species and lanthanide(III) ions is studied. As a result, a significant lanthanide luminescence enhancement by a factor of up to 250 under non-resonant UV excitation is observed. The absence of a distinct gold and silver plasmon resonance absorption, respectively, the missing nanoparticle signals in previous SAXS and TEM experiments, the unaltered luminescence lifetime of the lanthanide ions compared to the non-enhanced case, and an excitation maximum at 300,350,nm (equivalent to the absorption range of small noble metal particles) indicate unambiguously that the observed enhancement is due to a classical energy transfer between small noble metal particles and lanthanide ions, and not to a plasmonic field enhancement effect. It is proposed that very small, molecule-like noble metal particles (such as dimers, trimers, and tetramers) first absorb the excitation light, undergo a singlet-triplet intersystem crossing, and finally transfer the energy to an excited multiplet state of adjacent lanthanide(III) ions. X-ray lithographic microstructuring and excitation with a commercial UV LED show the potential of the activated glass samples as bright light-emitting devices with tunable emission colors. [source]


Effect of the Media on the Quantum Yield of Singlet Oxygen (O2(1,g)) Production by 9H -Fluoren-9-one: Solvents and Solvent Mixtures

HELVETICA CHIMICA ACTA, Issue 2 2003
Claudia
We have investigated the effect of a series of 18 solvents and mixtures of solvents on the production of singlet molecular oxygen (O2(1,g), denoted as 1O2) by 9H -fluoren-9-one (FLU). The normalized empirical parameter E derived from ET(30) has been chosen as a measure of solvent polarity using Reichardt's betaine dyes. Quantum yields of 1O2 production (,,) decrease with increasing solvent polarity and protic character as a consequence of the decrease of the quantum yield of intersystem crossing (,ISC). Values of ,, of unity have been found in alkanes. In nonprotic solvents of increasing polarity, ,ISC and, therefore, ,, decrease due to solvent-induced changes in the energy levels of singlet and triplet excited states of FLU. This compound is a poor 1O2 sensitizer in protic solvents, because hydrogen bonding considerably increases the rate of internal conversion from the singlet excited state, thus diminishing ,, to values much lower than those in nonprotic solvents of similar polarity. In mixtures of cyclohexane and alcohols, preferential solvation of FLU by the protic solvent leads to a fast decrease of ,, upon addition of increasing amounts of the latter. [source]


A Photophysical and Photochemical Study of 6-Methoxy-2-naphthylacetic Acid, the Major Metabolite of the Phototoxic Nonsteroidal Antiinflammatory Drug Nabumetone

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2000
F. Boscá
ABSTRACT Nabumetone is a phototoxic nonsteroidal antiinflammatory drug used for the treatment of osteoarthritis. However, nabumetone is considered a prodrug with its metabolite 6-methoxy-2-naphthylacetic acid the active form. Photophysical and photochemical studies on this metabolite have been undertaken. It undergoes photodecarboxylation in aerated aqueous and organic solvents. In addition to the accepted photodegradation pathway for related molecules, a new mechanism that implies generation of the naphthalene radical cation from the excited singlet and addition of O2 prior to the decarboxylation process has been demonstrated. Evidence for the involvement of the excited singlet state in this mechanism have been obtained by steady-state and time-resolved fluorescence experiments. The fluorescence quenching by O2 and the shorter singlet lifetime in aerated solvents support this assignment. Laser flash photolysis also supports this mechanism by showing the noninvolvement of the triplet in the formation of the naphthalene radical cation. Finally, the well-known electron acceptor CCl4 acts as an efficient singlet quencher, enhancing the route leading to the radical cation, preventing intersystem crossing to the triplet and thus resulting in a dramatic increase in the yield of 6-methoxy-2-naphthaldehyde, the major oxidative decarboxylation product; this constitutes unambiguous proof in favor of the new mechanistic proposals. [source]


Modeling the Photochemistry of the Reference Phototoxic Drug Lomefloxacin by Steady-State and Time-Resolved Experiments, and DFT and Post-HF Calculations

CHEMISTRY - A EUROPEAN JOURNAL, Issue 2 2008
Mauro Freccero Prof.
Abstract The irradiation in water of 1-ethyl-6,8-difluoro-7(3-methylpiperazino)3-quinolone-2-carboxylic acid (lomefloxacin), a bactericidal agent whose use is limited by its serious phototoxicity (and photomutagenicity in the mouse), leads to formation of the aryl cation in position eight that inserts into the 1-ethyl chain. Trapping of the cation was examined and it was found that chloride and bromide straightforwardly add in position eight, but with iodide and with pyrrole the 1-(2-iodoethyl) and the 1-[2-(2-pyrrolyl)ethyl] derivatives are formed. Flash photolysis reveals the triplet of lomefloxacin, a short-lived species (,max=370,nm, ,=40,ns) that generates the triplet cation (,max=480,nm, ,,120,ns). The last intermediate is quenched both by halides and by pyrrole. DFT and post-HF methods have shown that the triplet is the lowest state of the cation (,GST=13.3,kcal,mol,1) and intersystem crossing (ISC) to the singlet has no role because a less endothermic process occurs, that is, intramolecular hydrogen abstraction from the N -ethyl chain (9.2,kcal,mol,1) that finally leads to cyclization. The halides form weak complexes with the triplet cation (kq from 4.9×108 for Cl, to 7.0×109,m,1,s,1 for I,). With Cl, and Br, ISC occurs in the complex along with C8X bond formation. However, this latter process is slow with bulky iodide and with neutral pyrrole, and in these cases moderately endothermic electron transfer (ca. 7,kcal,mol,1) yielding the 8-quinolinyl radical occurs. Hydrogen exchange leads to a new radical on the 1-ethyl chain and to the observed products. These findings suggest that the mutagenic activity of the DNA-intercalated drug involves attack of the photogenerated cation to the heterocyclic bases. [source]


Quantum Chemical Study of the Reaction between Ni+ and H2S

CHEMPHYSCHEM, Issue 14 2010
Oier Lakuntza
Abstract The reaction between the Ni+ cation and H2S is studied by considering both the doublet ground state and the lowest-lying quartet state. For the doublet state the reaction is endothermic, whereas it is exothermic for the quartet state. Both CCSD(T)//B3LYP and B3LYP levels of theory, combined with the triple-zeta quality TZVP++G(3df,2p), predict that there are three spin crossings along the characterized reaction path. The first one is located after the first transition state, and the second and third ones before and after the second transition state. On the quartet potential energy surface, both transition states are close in energy to the reactants, while on the doublet surface both lie quite higher in energy. The doublet and quartet states of the HNiSH+ four-membered intermediate lie very close in energy and their corresponding electronic configurations are connected by a single electron flip. This suggests that the -SH ligand would not prevent a facile intersystem crossing at this intermediate molecule, in contrast to the larger protection provided by the more electronegative OH ligand. [source]