Home About us Contact | |||
Interspecies Differences (interspecy + difference)
Selected AbstractsLeaf-level resource use for evergreen and deciduous conifers along a resource availability gradientFUNCTIONAL ECOLOGY, Issue 3 2000B. D. Kloeppel Abstract 1.,We compared leaf-level carbon, nitrogen and water use for a deciduous (Larix occidentalis Nutt.) and sympatric evergreen (Pseudotsuga menziesii, Beissn., Franco, or Pinus contorta Engelm.) conifer along a resource availability gradient spanning the natural range of L. occidentalis in western Montana, USA. 2.,We hypothesized that leaf photosynthesis (A), respiration (r), specific leaf area (SLA) and foliar nitrogen concentration (N) would be higher for deciduous than sympatric evergreen conifers in mixed stands, and that these interspecies differences would increase from high to low resource availability. We also hypothesized that leaf-level nitrogen and water-use efficiency would be higher for the co-occurring evergreen conifer than L. occidentalis. 3.,In general, mass-based photosynthesis (Am) was significantly higher for L. occidentalis than co-occurring evergreen conifers in the drier sites, but Am was similar for evergreen and deciduous conifers at the mesic site. 4.,Mass-based foliar nitrogen concentration (Nm) was positively correlated to SLA for all species combined across the gradient (R2 = 0·64), but the relationship was very weak (R2 = 0·08,0·34) for evergreen and deciduous species separately. Mass-based Am and rm were poorly correlated to Nm for all species combined across the gradient (R2 = 0·28 and 0·04, respectively). 5.,For each site-species combination, daily maximum Am was negatively correlated to vapour pressure deficit (VPD) (R2 = 0·36,0·59), but was poorly correlated to twig predawn water potential (R2 < 0·04). 6.,Instantaneous nitrogen-use efficiency (NUEi; Am divided by Nm) and water-use efficiency (,13C) increased significantly (P = 0·05) from high to low resource availability for both evergreen and deciduous conifers, except for NUEi in L. occidentalis. [source] Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluationFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2004J.L.C.M. Dorne Abstract Safety evaluation aims to assess the dose,response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is ,without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 100.5 (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors of up to 45 and 9 would allow for the variability observed in children for CYP2D6 and CYP2C19 metabolism, respectively. This review presents an overview on the history of uncertainty factors, the main conclusions drawn from the analysis of inter-individual differences in metabolism and pharmacokinetics, the development of pathway-related uncertainty factors and their use in chemical risk assessment. [source] REVIEW: The functional organization of the intraparietal sulcus in humans and monkeysJOURNAL OF ANATOMY, Issue 1 2005Christian Grefkes Abstract In macaque monkeys, the posterior parietal cortex (PPC) is concerned with the integration of multimodal information for constructing a spatial representation of the external world (in relation to the macaque's body or parts thereof), and planning and executing object-centred movements. The areas within the intraparietal sulcus (IPS), in particular, serve as interfaces between the perceptive and motor systems for controlling arm and eye movements in space. We review here the latest evidence for the existence of the IPS areas AIP (anterior intraparietal area), VIP (ventral intraparietal area), MIP (medial intraparietal area), LIP (lateral intraparietal area) and CIP (caudal intraparietal area) in macaques, and discuss putative human equivalents as assessed with functional magnetic resonance imaging. The data suggest that anterior parts of the IPS comprising areas AIP and VIP are relatively well preserved across species. By contrast, posterior areas such as area LIP and CIP have been found more medially in humans, possibly reflecting differences in the evolution of the dorsal visual stream and the inferior parietal lobule. Despite interspecies differences in the precise functional anatomy of the IPS areas, the functional relevance of this sulcus for visuomotor tasks comprising target selections for arm and eye movements, object manipulation and visuospatial attention is similar in humans and macaques, as is also suggested by studies of neurological deficits (apraxia, neglect, Bálint's syndrome) resulting from lesions to this region. [source] Comparison by PAM Fluorometry of Photosynthetic Activity of Nine Marine Phytoplankton Grown Under Identical Conditions,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2005P. Juneau ABSTRACT The photosynthetic activity of marine phytoplankton from five algal classes (Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira oceanica, Thalassiosira weissflogii, Dunaliella tertiolecta, Mantoniella squamata, Emiliania huxleyi, Pavlova lutheri and Heterosigma akashiwo) was investigated under identical growth conditions to determine interspecies differences. Primary photochemistry and electron transport capacity of individual species were examined by pulse amplitude-modulated (PAM) fluorescence. Although few differences were found in maximal photosystem II (PSII) photochemical efficiency between various species, large differences were noticed in their PSII-photosystem I (PSI) electron transport activity. We found that species such as T. oceanica and M. squamata have much lower photochemical activity than H. akashiwo. It appeared that processes involved in electron transport activity were more susceptible to change during algal evolution compared with the primary photochemical act close to PSII. Large variations in the nonphotochemical energy dissipation event among species were also observed. Light energy required to saturate photosynthesis was very different between species. We have shown that M. squamata and H. akashiwo required higher light energy (>1300 ,mol m,2 s,1) to saturate photosynthesis compared with S. costatum and E. huxleyi (ca 280 ,mol m,2 s,1). These differences were interpreted to be the result of variations in the size of lightharvesting complexes associated with PSII. These disparities in photosynthetic activity might modulate algal community structure in the natural environment where light energy is highly variable. Our results suggest that for an accurate evaluation of primary productivity from fluorescence measurements, it is essential to know the species composition of the algal community and the individual photosynthetic capacity related to the major phytoplankton species present in the natural phytoplankton assemblage. [source] Brain damage in pigs produced by impact with a nonpenetrating captive bolt pistolAUSTRALIAN VETERINARY JOURNAL, Issue 3 2003JW FINNIE Objective To assess the effect of impact with a nonpene-trating captive bolt pistol in pigs by studying the resulting traumatic brain injury (TBI) and to compare the pathological changes with those found previously in the brains of sheep using a similar experimental paradigm. Procedure The unrestrained heads of six, anaesthetised, 7- to 8-week-old, Large White pigs were impacted in the temporal region with a nonpenetrating captive bolt pistol. Four hours postimpact, brains were perfusion-fixed with 4% paraformaldehyde. Coronal sections from six levels along the brain were cut and stained with haematoxylin and eosin and immunohistochemically for amyloid precursor protein, a sensitive marker of axonal injury (AI) in the brain after trauma. Results TBI in pigs was characterised only by very mild AI, whereas AI in sheep after captive bolt impact to the same head region was much more severe and widely distributed and often associated with vascular damage such as contusions, subarachnoid and intraparenchymal haemorrhage. Conclusions TBI in pigs was much less severe than in sheep after non-penetrating mechanical impact of similar magnitude, confirming the importance of interspecies differences in determining an appropriate physical method of euthanasia. [source] Prediction of human oral pharmacokinetics using nonclinical data: examples involving four proprietary compoundsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 8 2008Aberra Fura Abstract The oral pharmacokinetics (concentration-time profile) of four proprietary compounds in humans were predicted using the Cvss - MRT method. The first step was to demonstrate superposition of intravenous (i.v.) pharmacokinetic profiles of preclinical species following mathematical transformation of their respective concentration-time curves using the corresponding Cvss (where Cvss=dose/Vss; Vss is the volume of distribution at steady state) and mean residence time (MRT) values. The resultant profiles were then back-transformed to estimate human i.v. plasma concentration-time profiles using human Cvss and MRT values. Human Cvss and MRT values were estimated from projected human Vss and CL values. Projection of CL was based on scaled (in vitro) metabolic clearance, simple allometry with and without various correction factors and the unbound fraction corrected intercept method. Vss values were estimated by allometric scaling with and without correction for interspecies differences in plasma protein binding. The predicted human i.v. profiles, in combination with the estimated mean absorption rate constants and bioavailability, were then used to simulate the oral pharmacokinetics in human using one- or multi-compartment kinetic models. Overall, with this approach, key oral pharmacokinetic parameters such as AUC, Cmax, Cmin and oral plasma T˝ were projected to be within two-fold of the actual values in humans. Copyright © 2008 John Wiley & Sons, Ltd. [source] Biotransformation of flobufen enantiomers in ruminant hepatocytes and subcellular fractionsCHIRALITY, Issue 10 2001Lenka Skálová Abstract Flobufen (F), a new antiinflammatory drug, has one chiral and one prochiral center in its structure. Reduction of rac - F, the principal biotransformation pathway, leads to the formation of four diastereoisomers of 4-dihydroflobufen (DHF). F was chosen as a model substrate for interspecies comparison of activity, stereospecificity, and stereoselectivity of biotransformation enzymes in fallow bucks, red deer stags, and roe bucks in vitro. Formation of F metabolites was examined in hepatocyte suspension and in subcellular fractions of liver homogenate. (+)-R -F, (,)-S -F and rac - F were used as substrates. After incubation of substrates, the amounts and ratios of DHF diastereoisomers and F enantiomers were assessed by HPLC, with (R,R)-ULMO and terguride-bonded columns. Considerable interspecies differences in stereoselectivity and stereospecificity of F reductases were found at the cellular and subcellular levels, although these ruminants are closely related. Chiral inversion of F enantiomers to their antipodes was detected in vitro in all ruminants tested, but individual species also differed in the direction and rate of this inversion. Chirality 13:760,764, 2001. © 2001 Wiley-Liss, Inc. [source] |