Interspecific Relationships (interspecific + relationships)

Distribution by Scientific Domains


Selected Abstracts


Interspecific relationships among growth, mortality and xylem traits of woody species from New Zealand

FUNCTIONAL ECOLOGY, Issue 2 2010
Sabrina E. Russo
Summary 1.,Wood density is considered a key functional trait influencing the growth and survival of woody plants and has been shown to be related to a slow,fast rate-of-living continuum. Wood density is, however, an emergent trait arising from several vascular properties of wood, including the diameter and frequency of xylem conduits. 2.,We aimed to test the hypotheses that there is a set of inter-related trade-offs linked to the different functions of wood, that these trade-offs have direct consequences for tree growth and survival and that these trade-offs underlie the observed correlations between wood density and demographic rates. We evaluated the covariation between xylem anatomical traits among woody species of New Zealand and whether that covariation had the potential to constrain variation in wood density and demographic rates. 3.,Several xylem traits were strongly correlated with each other, but wood density was not correlated with any of them. We also found no significant relationships between wood density and growth or mortality rate. Instead, growth was strongly related to xylem traits associated with hydraulic capacity (conduit diameter and a conductivity index) and to maximum height, whereas mortality rate was strongly correlated only with maximum height. The diameter and frequency of conduits exhibited a significant negative relationship, suggesting a trade-off, which restricted variation in wood density and growth rate, but not mortality rate. 4.,Our results suggest, for woody species in New Zealand, that growth rate is more closely linked to xylem traits determining hydraulic conductance, rather than wood density. We also found no evidence that denser woods conferred higher survival, or that risk of cavitation caused by wide conduits increased mortality. 5.,In summary, we found little support for the idea that wood density is a good proxy for position along a fast,slow rate-of-living continuum. Instead, the strong, negative relationship between vessel diameter and frequency may constrain the realized diversity of demographic niches of tree species in New Zealand. Trade-offs in function therefore have the potential to shape functional diversity and ecology of forest communities by linking selection on structure and function to population-level dynamics. [source]


The evolution of hippocampus volume and brain size in relation to food hoarding in birds

ECOLOGY LETTERS, Issue 12 2004
László Zsolt Garamszegi
Abstract Food-hoarding birds frequently use spatial memory to relocate their caches, thus they may evolve a larger hippocampus in their brain than non-hoarder species. However, previous studies testing for such interspecific relationships provided conflicting results. In addition, food hoarding may be a cognitively complex task involving elaboration of a variety of brain regions, even outside of the hippocampus. Hence, specialization to food hoarding may also result in the enlargement of the overall brain. In a phylogenetic analysis of distantly related birds, we studied the interspecific association between food hoarding and the size of different brain regions, each reflecting different resolutions. After adjusting for allometric effects, the relative volume of the hippocampus and the relative size of the entire brain were each positively related to the degree of food-hoarding specialization, even after controlling for migration and brood parasitism. We also found some significant evidence for the relative volume of the telencephalon being associated with food hoarding, but this relationship was dependent on the approach we used. Hence, neural adaptation to food hoarding may favour the evolution of different brain structures. [source]


Molecular characterization of the fish-pathogenic fungus Aphanomyces invadans

JOURNAL OF FISH DISEASES, Issue 5 2003
J H Lilley
Abstract Aphanomyces invadans (Saprolegniaceae) is a peronosporomycete fungus associated with the serious fish disease, epizootic ulcerative syndrome (EUS), also known as mycotic granulomatosis. In this study, interspecific relationships were examined between A. invadans isolates and other aquatic animal pathogenic Saprolegniaceae, and saprophytic Saprolegniaceae from EUS-affected areas. Restriction fragment length polymorphisms and sequences of ribosomal DNA confirmed that A. invadans is distinct from all other species studied. A sequence from the internal transcribed spacer region ITS1, unique to A. invadans, was used to design primers for a PCR-based diagnostic test. Intraspecific relationships were also examined by random amplification of polymorphic DNA using 20 isolates of A. invadans from six countries. The isolates showed a high degree of genetic homogeneity using 14 random ten-mer primers. This provides evidence that the fungus has spread across Asia in one relatively rapid episode, which is consistent with reports of outbreaks of EUS. Physiological distinctions between A. invadans and other Aphanomyces species based on a data set of 16 growth parameters showed remarkable taxonomic congruence with the molecular phylogeny. [source]


Cyclic voles, prey switching in red fox, and roe deer dynamics , a test of the alternative prey hypothesis

OIKOS, Issue 2 2003
Petter Kjellander
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40,N, 15°25,E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns. [source]


Phylogeny of Macroptilium (Leguminosae): morphological, biochemical and molecular evidence

CLADISTICS, Issue 2 2007
Shirley M. Espert
Macroptilium (Benth.) Urban (Phaseoleae, Papilionoideae, Leguminosae) is an American genus of legumes, belonging to subtribe Phaseolinae along with other economically important genera, such as Vigna Savi and Phaseolus L. (the common bean genus). Cladistic analyses based on morphological, biochemical (storage seed proteins) and molecular (nuclear and plastid DNA sequences) data were performed on the 18 species currently ascribed to the genus, exploring several character weighting strategies. Equal weights, implied weighting and different transversion/transition costs were applied. The three data sets were first analyzed with separate partitions, and then combined into a single matrix. This study is the first one to analyze all the species of the genus from a cladistic point of view. In all the most parsimonious trees obtained, Macroptilium is monophyletic with excellent support values. Two monophyletic clades are recovered in almost all the analyses. Both are compound by nine species, and they constitute two sections of Macroptilium. Several interspecific relationships inside the genus are discussed. İ The Willi Hennig Society 2007. [source]