Internal Volume (internal + volume)

Distribution by Scientific Domains


Selected Abstracts


Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2005
Mukku Shrinivas Rao
Abstract Chitin was produced by fermenting shrimp heads and shells with Lactobacillus plantarum 541 in a drum reactor with an internal volume of 3 dm3. The crude chitin yield from heads and shells was 4.5 and 13% respectively, comparable to the values obtained by the chemical method. For shrimp heads 83% deproteination and 88% demineralisation and for shrimp shells 66% deproteination and 63% demineralisation were achieved. The liquor obtained in both cases was of good sensory quality with a high content of essential amino acids and therefore with potential to produce protein powder for human consumption. The crude chitin was refined and converted to chitosan using 12.5 M NaOH. The chitosan obtained had a residual ash and protein content below 1%, a solubility of more than 98%, a viscosity in the range 50,400 cP and a degree of deacetylation of 81,84%. The molecular weight was in the range (0.8,1.4) × 106 Da. IR analysis indicated that the chitosan obtained through fermentation was similar to that obtained by the chemical method. Copyright © 2005 Society of Chemical Industry [source]


Study on conical columns for semi-preparative liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 3-4 2003
Ma Jiping
Abstract The dynamic flow profiles and column efficiencies in conically shaped semi-preparative liquid chromatographic columns (inlet ID larger than outlet ID) with two different conical angles (7° and 15°) were studied. The dynamic flow profiles were studied by an on-column visualization method. Conical columns were compared with cylindrical column of the same length and internal volume. The results showed that the flow profile of a sample band in the conical column of 7° (50 mm×17 mm , 11 mm ID) was parabolic in shape. The sample band migrated slower in the wall region than in the central region, as in the cylindrical column (50 mm×14 mm ID). However, the sample band in the conical column of 15° (50 mm×20 mm , 7 mm ID) migrated slower in the central region than in the wall region, resulting in a reverse parabolic flow profile, in contrast to that in cylindrical column. This indicated that a flat flow profile might be realized in a conical column with a conical angle between 7° and 15°. The conical column of 15° had the highest column efficiency among the three columns under the same conditions. Compared with the cylindrical column packed with identical packing material, the conical column of 15° had 22%,45% higher column efficiency and 11%,27% higher peak height. [source]


The ability of breathing system filters to prevent liquid contamination of breathing systems: a laboratory study*

ANAESTHESIA, Issue 1 2002
APPARATUS
The ability of 29 different breathing system filters (five pleated hydrophobic and 24 electrostatic) to prevent the passage of water was assessed. Five, 10 or 20 ml of water was added on to the patient side of the filter during ventilation of a patient model with the filter layer orientated either horizontally or vertically. Water did not pass through the filter layer during any of the 30 tests on the pleated hydrophobic filters. In contrast, water passed through the filter layer in 39 of the 144 tests on the electrostatic filters (27%; 95% CI for difference between the filter types 14,35%; p = 0.0004). For electrostatic filters, a smaller internal volume, a larger volume of water added, and having the filter layer horizontal rather than vertical all significantly increased the probability of water penetration. Although pleated hydrophobic filters would protect the breathing system against liquid contamination, electrostatic filters can also be used, provided the internal volume is chosen appropriately and the filter layer is vertical. [source]


Why do we need a biomechanical approach to the ocular rigidity concept?

ACTA OPHTHALMOLOGICA, Issue 2009
KE KOTLIAR
Ocular rigidity in ophthalmology is generally assumed to be a measurable surrogate parameter related to the biomechanical properties of the whole globe. Clinical tonometry and tonography, as well as recently developed methods to assess the ocular pulse amplitude and pulsatile ocular blood flow and measurements with the ocular response analyzer are based on the concept of ocular rigidity. Clinical concepts of ocular rigidity describe a resulting effect without considerations of possible diverse morphology and material properties of the different ocular tissues. It is commonly accepted that ocular rigidity is related to the elasticity of the sclera. Many formulations are however dependent on the internal volume of the globe, intraocular pressure, corneal biomechanics and thickness of the corneoscleral shell. Sometimes this is extended to biomechanical properties of the ocular vasculature and perfusion pressure. Therefore ocular rigidity is expressed in various units and has different physical meanings but the same name is used which is confusing. Ocular biomechanics introduces parameters of elasticity and viscoelasticity of the sclera, cornea and other tissues which consider the morphology of the different tissues describing their mechanical properties such as: Young's modules of the sclera and Poisson's ratios of the cornea. When applying these rigorous statements and methods of biomechanical modeling a unified concept for ocular rigidity can be developed in order to link the limited clinical concepts, to improve them and to better understand the results of clinical measurements. [source]