Home About us Contact | |||
Internal Reflection Fluorescence Microscopy (internal + reflection_fluorescence_microscopy)
Kinds of Internal Reflection Fluorescence Microscopy Selected AbstractsSub-100-nanometre resolution in total internal reflection fluorescence microscopyJOURNAL OF MICROSCOPY, Issue 1 2008M. BECK Summary Combining total internal reflection fluorescence microscopy with structured illumination allows optical wide-field imaging with sub-100-nanometre resolution. We present a novel objective-launch set-up for standing wave illumination that takes advantage of a tunable transmission diffraction grating and transparent phase shifters actuated by electro-active polymers to control the excitation pattern in three dimensions. Image acquisition is completed in less than 1 s. To reconstruct the extended image spectrum, we apply a new apodization function that results in a lateral resolution of 89 nm for green emission wavelength. [source] Nanometre localization of single ReAsH moleculesJOURNAL OF MICROSCOPY, Issue 3 2004H. PARK Summary ReAsH is a red-emitting dye that binds to the unique sequence Cys-Cys-Xaa-Xaa-Cys-Cys (where Xaa is a noncysteine amino acid) in the protein. We attached a single ReAsH to a calmodulin with an inserted tetracysteine motif and immobilized individual calmodulins to a glass surface at low density. Total internal reflection fluorescence microscopy was used to image individual ReAsH molecules. We determined the centre of the distribution of photons in the image of a single molecule in order to determine the position of the dye within 5 nm precision and with an image integration time of 0.5 s. The photostability of ReAsH was also characterized and observation times ranging from several seconds to over a minute were observed. We found that 2-mercaptoethanesulphonic acid increased the number of collected photons from ReAsH molecules by a factor of two. Individual ReAsH molecules were then moved via a nanometric stage in 25 or 40 nm steps, either at a constant rate or at a Poisson-distributed rate. Individual steps were clearly seen, indicating that the observation of translational motion on this scale, which is relevant for many biomolecular motors, is possible with ReAsH. [source] The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cellsJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Takashi Tsuboi Abstract Rabphilin is generally thought to be involved in the regulation of secretory vesicle exocytosis in neurons and neuroendocrine cells, and it has recently been hypothesized that the C2B domain of rabphilin promotes the docking of dense-core vesicles to the plasma membrane through simultaneous interaction with a vesicle protein, Rab3A/27A, and a plasma membrane protein, SNAP-25 (synaptosome-associated protein of 25 kDa). However, the physiological significance of the rabphilin,SNAP-25 interaction in the vesicle-docking step has never been elucidated. In this study we demonstrated by a mutation analysis that the polybasic sequence (587 KKAKHKTQIKKK 598) in the C2B domain of rabphilin is required for SNAP-25 binding, and that the Asp residues in the Ca2+ -binding loop 3 (D628 and D630) of the C2B domain are not required. We also investigated the effect of Lys,Gln (KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in individual PC12 cells. A rabphilin(KQ) mutant that completely lacks SNAP-25-binding activity significantly decreased the number of plasma-membrane-docked vesicles and strongly inhibited high-KCl-induced dense-core vesicle exocytosis. These results indicate that the polybasic sequence in the C2B domain functions as an effector domain for SNAP-25 and controls the number of ,releasable' vesicles docked to the plasma membrane. [source] Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxinJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006Carmen Vale Abstract A channel open on the membrane can be formed by palytoxin (PTX). Ten nanomolar PTX caused an irreversible increase in the cytosolic calcium concentration ([Ca2+]c), which was abolished in the absence of external calcium. The increase was eliminated by saxitoxin (STX) and nifedipine (NIF). Calcium rise is secondary to the membrane depolarization. PTX effect on calcium was dependent on extracellular Na+. Li+ decreased the PTX-evoked rise in [Ca2+]c; replacement of Na+ by N-methyl-D-glucamine (NMDG) abolished PTX-induced calcium increase. [Ca2+]c increase by PTX was strongly reduced after inhibition of the reverse operation of the Na+/Ca2+ exchanger, in the presence of antagonists of excitatory amino acid (EAA) receptors, and by inhibition of neurotransmitter release. PTX did not modify calcium extrusion by the plasma membrane Ca2+ -ATPase (PMCA), because blockade of the calcium pump increased rather than decreased the PTX-induced calcium influx. Extracellular levels of glutamate and aspartate were measured by HPLC and exocytotic neurotransmitter release by determination of synaptic vesicle exocytosis using total internal reflection fluorescence microscopy (TIRFM). PTX caused a concentration-dependent increase in EAA release to the culture medium. Ten nanomolar PTX decreased cell viability by 30% within 5 min. PTX-induced calcium influx involves three pathways: Na+ -dependent activation of voltage-dependent sodium channels (VDSC) and voltage-dependent calcium channels (VDCC), reverse operation of the Na+/Ca2+ exchanger, and indirect activation of EAA receptors through glutamate release. The neuronal injury produced by the toxin could be partially mediated by the PTX-induced overactivation of EAA receptors, VDSC, VDCC and the glutamate efflux into the extracellular space. © 2006 Wiley-Liss, Inc. [source] |