Internal Concentration (internal + concentration)

Distribution by Scientific Domains


Selected Abstracts


In vivo proton spectroscopy without solvent suppression

CONCEPTS IN MAGNETIC RESONANCE, Issue 4 2001
David B. Clayton
Abstract In 1H MR spectroscopy of the human brain, it is common practice to suppress the solvent signal prior to acquisition. This reduces the large dynamic range which is otherwise required of the MR receiver and digitizer in order to detect the dilute metabolite resonances in the presence of the much larger water signal. However, complete solvent suppression is not always obtainable, particularly over large volumes and in superficial regions containing large susceptibility gradients. In this work, it demonstrated that modern commercial MR scanners possess the dynamic range necessary to adequately resolve the 1H metabolites in unsuppressed spectra. Moreover, a postacquisition method is presented which can completely remove the intact water signal and accurately quantitate the metabolite peaks. Preserving the water signal in in vivo spectroscopy has several useful benefits, such as providing a high signal-to-noise ratio internal concentration, frequency, and line shape reference. Comparison is made between suppressed and unsuppressed spectra from both a phantom and the human brain acquired at 4 T. © 2001 John Wiley & Sons, Inc. Concepts Magn Reson 13: 260,275, 2001 [source]


Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach

THE JOURNAL OF PHYSIOLOGY, Issue 2 2005
Hikaru Hashitani
When intracellular recordings were made from the circular layer of the intact muscular wall of the isolated guinea pig gastric corpus, an ongoing regular high frequency discharge of slow waves was detected even though this region lacked myenteric interstitial cells. When slow waves were recorded from preparations consisting of both the antrum and the corpus, slow waves of identical frequency, but with different shapes, were generated in the two regions. Corporal slow waves could be distinguished from antral slow waves by their time courses and amplitudes. Corporal slow waves, like antral slow waves, were abolished by buffering the internal concentration of calcium ions, [Ca2+]i, to low levels, or by caffeine, 2-aminoethoxydiphenyl borate or the chloride channel blocker DIDS. Corporal preparations demonstrated an ongoing discharge of unitary potentials, as has been found in all other tissues containing interstitial cells. The experiments show that the corpus provides the dominant pacemaker activity which entrains activity in other regions of the stomach and it is suggested that this activity is generated by corporal intramuscular interstitial cells. [source]


A voltage-dependent K+ current contributes to membrane potential of acutely isolated canine articular chondrocytes

THE JOURNAL OF PHYSIOLOGY, Issue 1 2004
Jim R. Wilson
The electrophysiological properties of acutely isolated canine articular chondrocytes have been characterized using patch-clamp methods. The ,steady-state' current,voltage relationship (I,V) of single chondrocytes over the range of potentials from ,100 to +40 mV was highly non-linear, showing strong outward rectification positive to the zero-current potential. Currents activated at membrane potentials negative to ,50 mV were time independent, and the I,V from ,100 to ,60 mV was linear, corresponding to an apparent input resistance of 9.3 ± 1.4 G, (n= 23). The outwardly rectifying current was sensitive to the K+ channel blocking ion tetraethylammonium (TEA), which had a 50% blocking concentration of 0.66 mm (at +50 mV). The ,TEA-sensitive' component of the outwardly rectifying current had time- and membrane potential-dependent properties, activated near ,45 mV and was half-activated at ,25 mV. The reversal potential of the ,TEA-sensitive' current with external K+ concentration of 5 mm and internal concentration of 145 mm, was ,84 mV, indicating that the current was primarily carried by K+ ions. The resting membrane potential of isolated chondrocytes (,38.1 ± 1.4 mV; n= 19) was depolarized by 14.8 ± 0.9 mV by 25 mm TEA, which completely blocked the K+ current of these cells. These data suggest that this voltage-sensitive K+ channel has an important role in regulating the membrane potential of canine articular chondrocytes. [source]


Substrate-permeable encapsulation of enzymes maintains effective activity, stabilizes against denaturation, and protects against proteolytic degradation

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2001
Mathieu Nasseau
Abstract How can enzymes be protected against denaturation and proteolysis while keeping them in a fully functional state? One solution is to encapsulate the enzymes into liposomes, which enhances their stability against denaturation and proteases. However, the permeability barrier of the lipid membrane drastically reduces the activity of enzyme entrapped in the liposome by reducing the internal concentration of the substrate. To overcome this problem, we permeabilized the wall of the liposome by reconstitution of a porin from Escherichia coli. In this way, we recovered the full functionality of the enzyme while retaining the protection against denaturation and proteolytic enzymes. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 75: 615,618, 2001. [source]


Exposure of pacific herring to weathered crude oil: Assessing effects on ova,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2000
Mark G. Carls
Abstract In order to determine if exposure to Exxon Valdez oil would adversely affect progeny, reproductively mature Pacific herring were confined in water contaminated with weathered crude oil. Progeny were generally not affected by a 16-d parental exposure to initial aqueous concentrations of ,58 ,g/L total polynuclear aromatic hydrocarbons (PAHs), yielding concentrations of up to 9.7 ,g/g in ova. In contrast, previous research indicated that a 16-d direct exposure of herring eggs to similarly weathered oil was detrimental to developing embryos at total initial PAH concentrations of 9 ,g/L. Progeny of exposed fish could have been insulated from toxic effects for two reasons. First, as an apparent result of partitioning and metabolism in parental tissues, lower concentrations and less toxic PAHs were preferentially accumulated by ova (primarily naphthalenes; 84,92%). Second, peak exposure concentrations occurred before cell differentiation. The opposite was true for directly exposed eggs; the more toxic multi-ring PAHs (e.g., phenanthrenes and chrysenes) and alkyl-substituted homologues were accumulated, and internal concentrations increased during cell division, differentiation, and organ development. Thus, Pacific herring embryos are more critically sensitive to oil pollution than are gametes. [source]


A Generic QSAR for Assessing the Bioaccumulation Potential of Organic Chemicals in Aquatic Food Webs

MOLECULAR INFORMATICS, Issue 3 2003

Abstract This study presents the development of a quantitative-structure activity relationship (QSAR) for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. The QSAR is derived by parameterization and calibration of a mechanistic food web bioaccumulation model. Calibration of the QSAR is based on the derivation of a large database of bioconcentration and bioaccumulation factors, which is evaluated for data quality. The QSAR provides estimates of the bioaccumulation potential of organic chemicals in higher trophic level fish species of aquatic food webs. The QSAR can be adapted to include the effect of metabolic transformation and trophic dilution on the BAF. The BAF-QSAR can be applied to categorize organic chemical substances on their bioaccumulation potential. It identifies chemicals with a log KOW between 4.0 and 12.2 to exhibit BAFs greater than 5,000 in the absence of significant metabolic transformation rates. The BAF-QSAR can also be used in the derivation of water quality guidelines and total maximum daily loadings by relating internal concentrations of organic chemicals in upper trophic fish species to corresponding concentrations in the water. [source]