Interface Reconstruction (interface + reconstruction)

Distribution by Scientific Domains


Selected Abstracts


Interface reconstruction with least-square fit and split Eulerian,Lagrangian advection

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2003
Ruben Scardovelli
Abstract Two new volume-of-fluid (VOF) reconstruction algorithms, which are based on a least-square fit technique, are presented. Their performance is tested for several standard shapes and is compared to a few other VOF/PLIC reconstruction techniques, showing in general a better convergence rate. The geometric nature of Lagrangian and Eulerian split advection algorithms is investigated in detail and a new mixed split Eulerian implicit,Lagrangian explicit (EI,LE) scheme is presented. This method conserves the mass to machine error, performs better than split Eulerian and Lagrangian algorithms, and it is only slightly worse than unsplit schemes. However, the combination of the interface reconstruction with the least-square fit and its advection with the EI,LE scheme appears superior to other existing approaches. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Structure,Property Relation of SrTiO3/LaAlO3 Interfaces

ADVANCED MATERIALS, Issue 17 2009
Mark Huijben
Abstract A large variety of transport properties have been observed at the interface between the insulating oxides SrTiO3 and LaAlO3 such as insulation, 2D interface metallicity, 3D bulk metallicity, magnetic scattering, and superconductivity. The relation between the structure and the properties of the SrTiO3/LaAlO3 interface can be explained in a meaningful way by taking into account the relative contribution of three structural aspects: oxygen vacancies, structural deformations (including cation disorder), and electronic interface reconstruction. The emerging phase diagram is much richer than for related bulk oxides due to the occurrence of interface electronic reconstruction. The observation of this interface phenomenon is a display of recent advances in thin film deposition and characterization techniques, and provides an extension to the range of exceptional electronic properties of complex oxides. [source]


The moment-of-fluid method in action

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2009
Hyung Taek Ahn
Abstract The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. The MOF method uses moment data, namely the material volume fraction, as well as the centroid, for a more accurate representation of the material configuration, interfaces and concomitant volume advection. In contrast, the volume-of-fluid method uses only volume fraction data for interface reconstruction and advection. Based on the moment data for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier,Stokes solver for two materials. The effectiveness of the MOF method is demonstrated with a free-surface dam-break and a two-material Rayleigh,Taylor problem. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Interface reconstruction with least-square fit and split Eulerian,Lagrangian advection

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2003
Ruben Scardovelli
Abstract Two new volume-of-fluid (VOF) reconstruction algorithms, which are based on a least-square fit technique, are presented. Their performance is tested for several standard shapes and is compared to a few other VOF/PLIC reconstruction techniques, showing in general a better convergence rate. The geometric nature of Lagrangian and Eulerian split advection algorithms is investigated in detail and a new mixed split Eulerian implicit,Lagrangian explicit (EI,LE) scheme is presented. This method conserves the mass to machine error, performs better than split Eulerian and Lagrangian algorithms, and it is only slightly worse than unsplit schemes. However, the combination of the interface reconstruction with the least-square fit and its advection with the EI,LE scheme appears superior to other existing approaches. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Viscous co-current downward Taylor flow in a square mini-channel

AICHE JOURNAL, Issue 7 2010
Özge Keskin
Abstract This article presents a computational study of the co-current downward Taylor flow of gas bubbles in a viscous liquid within a square channel of 1 mm hydraulic diameter. The three-dimensional numerical simulations are performed with an in-house computer code, which is based on the volume-of-fluid method with interface reconstruction. The computed (always axi-symmetric) bubble shapes are validated by experimental flow visualizations for varying capillary number. The evaluation of the numerical results for a series of simulations reveals the dependence of the bubble diameter and the interfacial area per unit volume on the capillary number. Correlations between bubble velocity and total superficial velocity are also provided. The present results are useful to estimate the values of the bubble diameter, the liquid film thickness and the interfacial area per unit volume from given values of the gas and liquid superficial velocities. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]