Home About us Contact | |||
Interface Engineering (interface + engineering)
Selected AbstractsInterface Engineering for Organic ElectronicsADVANCED FUNCTIONAL MATERIALS, Issue 9 2010Hong Ma Abstract The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light-emitting diodes (OLEDs), photovoltaics (OPVs), and field-effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant-modified cathodes, hole-transporting buffer layers, and self-assembled monolayer (SAM)-modified anodes are highlighted. In addition to enabling the production of high-efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source,drain electrode,semiconductor interfaces, dielectric,semiconductor interfaces, and ultrathin dielectrics is shown to allow for high-performance OFETs. [source] Interface Engineering of Inorganic Thin-Film Solar Cells , Materials-Science Challenges for Advanced Physical ConceptsADVANCED MATERIALS, Issue 42 2009Wolfram Jaegermann Abstract The challenges and research needs for the interface engineering of thin-film solar cells using inorganic-compound semiconductors are discussed from a materials-science point of view. It is, in principle, easily possible to define optimized device structures from physical considerations. However, to realize these structures, many materials' limitations must be overcome by complex processing strategies. In this paper, interface properties and growth morphology are discussed using CdTe solar cells as an example. The need for a better fundamental understanding of cause,effect relationships for improving thin-film solar cells is emphasized. [source] Conjugated Polymers: Enhanced Charge Transportation in Semiconducting Polymer/Insulating Polymer Composites: The Role of an Interpenetrating Bulk Interface (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 11 2010Mater. By taking advantage of two-phase interface engineering in three dimensions, X. Yang and co-workers demonstrate on page 1714 the substantially improved (instead of decreased) electrical properties of conjugated polymer/insulating polymer composites. This novel approach paves the way for preparing high-performance semiconducting polymer composites with reduced cost, improved mechanical properties, and environmental stability. [source] Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet DetectorsADVANCED MATERIALS, Issue 45 2009Xiaolong Du Abstract ZnO is a wide-bandgap (3.37,eV at room temperature) oxide semiconductor that is attractive for its great potential in short-wavelength optoelectronic devices, in which high quality films and heterostructures are essential for high performance. In this study, controlled growth of ZnO-based thin films and heterostructures by molecular beam epitaxy (MBE) is demonstrated on different substrates with emphasis on interface engineering. It is revealed that ultrathin AlN or MgO interfacial layers play a key role in establishing structural and chemical compatibility between ZnO and substrates. Furthermore, a quasi-homo buffer is introduced prior to growth of a wurtzite MgZnO epilayer to suppress the phase segregation of rock-salt MgO, achieving wide-range bandgap tuning from 3.3 to 4.55,eV. Finally, a visible-blind UV detector exploiting a double heterojunction of n-ZnO/insulator-MgO/p-Si and a solar-blind UV detector using MgZnO as an active layer are fabricated by using the growth techniques discussed here. [source] Interface Engineering of Inorganic Thin-Film Solar Cells , Materials-Science Challenges for Advanced Physical ConceptsADVANCED MATERIALS, Issue 42 2009Wolfram Jaegermann Abstract The challenges and research needs for the interface engineering of thin-film solar cells using inorganic-compound semiconductors are discussed from a materials-science point of view. It is, in principle, easily possible to define optimized device structures from physical considerations. However, to realize these structures, many materials' limitations must be overcome by complex processing strategies. In this paper, interface properties and growth morphology are discussed using CdTe solar cells as an example. The need for a better fundamental understanding of cause,effect relationships for improving thin-film solar cells is emphasized. [source] New approach to twin interfaces of modulated martensiteJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2010Zongbin Li In Ni,Mn,Ga ferromagnetic shape memory alloys, the crystallographic nature of martensitic variant interfaces is one of the key factors governing the variant reorientation through field-induced interface motion and hence the shape memory performance. So far, the crystal structure studies of these materials , conducted by means of transmission electron microscopy , have suffered from uncertainties in determining the number of unit cells of modulated superstructure, and consequently improper interpretations of orientation correlations of martensitic variants. In this paper a new approach is presented for comprehensive analysis of crystallographic and morphological information of modulated martensite, using automated electron backscatter diffraction. As a first attempt, it has been applied for the unambiguous determination of the orientation relationships of adjacent martensitic variants and their twin interface characters in an incommensurate 7M modulated Ni,Mn,Ga alloy, from which a clear and full-featured image of the crystallographic nature of constituent twin interfaces is built up. Certainly, this new approach will make it feasible not only to generalize the statistical analysis of martensitic variant distributions for various materials with modulated superstructure, but also to give insight into the crystallographic characteristics of martensitic variant interfaces and the variant reorientation mechanism of new advanced materials for interface engineering. [source] |